

Kubernetes	Best	Practices
Blueprints	for	Building	Successful	Applications	on

Kubernetes

Brendan	Burns,	Eddie	Villalba,	Dave	Strebel,	and
Lachlan	Evenson

Kubernetes	Best	Practices
by	Brendan	Burns,	Eddie	Villalba,	Dave	Strebel,	and	Lachlan	Evenson

Copyright	©	2020	Brendan	Burns,	Eddie	Villalba,	Dave	Strebel,	and	Lachlan
Evenson.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com).	For
more	information,	contact	our	corporate/institutional	sales	department:	800-998-
9938	or	corporate@oreilly.com.

Acquisitions	Editor:	John	Devins

Development	Editor:	Virginia	Wilson

Production	Editor:	Elizabeth	Kelly

Copyeditor:	Charles	Roumeliotis

Proofreader:	Sonia	Saruba

Indexer:	WordCo	Indexing	Services,	Inc.

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Rebecca	Demarest

November	2019:	First	Edition

Revision	History	for	the	First	Release

2019-11-12:	First	Release

http://oreilly.com

See	https://www.oreilly.com/catalog/errata.csp?isbn=0636920273219	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Kubernetes
Best	Practices,	the	cover	image,	and	related	trade	dress	are	trademarks	of
O’Reilly	Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	authors,	and	do	not	represent
the	publisher’s	views.	While	the	publisher	and	the	authors	have	used	good	faith
efforts	to	ensure	that	the	information	and	instructions	contained	in	this	work	are
accurate,	the	publisher	and	the	authors	disclaim	all	responsibility	for	errors	or
omissions,	including	without	limitation	responsibility	for	damages	resulting
from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and	instructions
contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or
the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-492-05647-8

[LSI]

https://www.oreilly.com/catalog/errata.csp?isbn=0636920273219

Preface

Who	Should	Read	This	Book
Kubernetes	is	the	de	facto	standard	for	cloud	native	development.	It	is	a
powerful	tool	that	can	make	your	next	application	easier	to	develop,	faster	to
deploy,	and	more	reliable	to	operate.	However,	unlocking	the	power	of
Kubernetes	requires	using	it	correctly.	This	book	is	intended	for	anyone	who	is
deploying	real-world	applications	to	Kubernetes	and	is	interested	in	learning
patterns	and	practices	they	can	apply	to	the	applications	that	they	build	on	top	of
Kubernetes.

Importantly,	this	book	is	not	an	introduction	to	Kubernetes.	We	assume	that	you
have	a	basic	familiarity	with	the	Kubernetes	API	and	tools,	and	that	you	know
how	to	create	and	interact	with	a	Kubernetes	cluster.	If	you	are	looking	to	learn
Kubernetes,	there	are	numerous	great	resources	out	there,	such	as	Kubernetes:
Up	and	Running	(O’Reilly)	that	can	give	you	an	introduction.

Instead,	this	book	is	a	resource	for	anyone	who	wants	to	dive	deep	on	how	to
deploy	specific	applications	and	workloads	on	Kubernetes.	It	should	be	useful	to
you	whether	you	are	about	to	deploy	your	first	application	onto	Kubernetes	or
you’ve	been	using	Kubernetes	for	years.

Why	We	Wrote	This	Book
Between	the	four	of	us,	we	have	significant	experience	helping	a	wide	variety	of
users	deploy	their	applications	onto	Kubernetes.	Through	this	experience,	we
have	seen	where	people	struggle,	and	we	have	helped	them	find	their	way	to
success.	When	sitting	down	to	write	this	book,	we	attempted	to	capture	these
experiences	so	that	many	more	people	could	learn	by	reading	the	lessons	that	we
learned	from	these	real-world	experiences.	It’s	our	hope	that	by	committing	our
experiences	to	writing,	we	can	scale	our	knowledge	and	allow	you	to	be
successful	deploying	and	managing	your	application	on	Kubernetes	on	your
own.

https://oreil.ly/ziNRK

Navigating	This	Book
Although	you	might	read	this	book	from	cover	to	cover	in	a	single	sitting,	that	is
not	really	how	we	intended	you	to	use	it.	Instead,	we	designed	this	book	to	be	a
collection	of	standalone	chapters.	Each	chapter	gives	a	complete	overview	of	a
particular	task	that	you	might	need	to	accomplish	with	Kubernetes.	We	expect
people	to	dive	into	the	book	to	learn	about	a	specific	topic	or	interest,	and	then
leave	the	book	alone,	only	to	return	when	a	new	topic	comes	up.

Despite	this	standalone	approach,	there	are	some	themes	that	span	the	book.
There	are	several	chapters	on	developing	applications	on	Kubernetes.	Chapter	2
covers	developer	workflows.	Chapter	5	discusses	Continuous	Integration	and
testing.	Chapter	15	covers	building	higher-level	platforms	on	top	of	Kubernetes,
and	Chapter	16	discusses	managing	state	and	stateful	applications.	In	addition	to
developing	applications,	there	are	several	chapters	on	operating	services	in
Kubernetes.	Chapter	1	covers	the	setup	of	a	basic	service,	and	Chapter	3	covers
monitoring	and	metrics.	Chapter	4	covers	configuration	management,	while
Chapter	6	covers	versioning	and	releases.	Chapter	7	covers	deploying	your
application	around	the	world.

There	are	also	several	chapters	on	cluster	management,	including	Chapter	8	on
resource	management,	Chapter	9	on	networking,	Chapter	10	on	pod	security,
Chapter	11	on	policy	and	governance,	Chapter	12	on	managing	multiple	clusters,
and	Chapter	17	on	admission	control	and	authorization.	Finally	there	are	several
chapters	that	are	truly	independent;	these	cover	machine	learning	(Chapter	14)
and	integrating	with	external	services	(Chapter	13).

Though	it	can	be	useful	to	read	all	of	the	chapters	before	you	actually	attempt
the	topic	in	the	real	world,	our	primary	hope	is	that	you	will	treat	this	book	as	a
reference.	It	is	intended	as	a	guide	as	you	put	these	topics	to	practice	in	the	real
world.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant width bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant width italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download
at	https://oreil.ly/KBPsample.

If	you	have	a	technical	question	or	a	problem	using	the	code	examples,	please
send	email	to	bookquestions@oreilly.com.

https://oreil.ly/KBPsample
mailto:bookquestions@oreilly.com

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is
offered	with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You
do	not	need	to	contact	us	for	permission	unless	you’re	reproducing	a	significant
portion	of	the	code.	For	example,	writing	a	program	that	uses	several	chunks	of
code	from	this	book	does	not	require	permission.	Selling	or	distributing
examples	from	O’Reilly	books	does	require	permission.	Answering	a	question
by	citing	this	book	and	quoting	example	code	does	not	require	permission.
Incorporating	a	significant	amount	of	example	code	from	this	book	into	your
product’s	documentation	does	require	permission.

We	appreciate,	but	generally	do	not	require,	attribution.	An	attribution	usually
includes	the	title,	author,	publisher,	and	ISBN.	For	example:	“Kubernetes	Best
Practices	by	Brendan	Burns,	Eddie	Villalba,	Dave	Strebel,	and	Lachlan	Evenson
(O’Reilly).	Copyright	2020	Brendan	Burns,	Eddie	Villalba,	Dave	Strebel,	and
Lachlan	Evenson,	978-1-492-05647-8.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

O’Reilly	Online	Learning

NOTE
For	more	than	40	years,	O’Reilly	Media	has	provided	technology	and	business	training,
knowledge,	and	insight	to	help	companies	succeed.

Our	unique	network	of	experts	and	innovators	share	their	knowledge	and
expertise	through	books,	articles,	conferences,	and	our	online	learning	platform.
O’Reilly’s	online	learning	platform	gives	you	on-demand	access	to	live	training
courses,	in-depth	learning	paths,	interactive	coding	environments,	and	a	vast
collection	of	text	and	video	from	O’Reilly	and	200+	other	publishers.	For	more
information,	please	visit	http://oreilly.com.

How	to	Contact	Us

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at	https://oreil.ly/KubBP.

Email	bookquestions@oreilly.com	to	comment	or	ask	technical	questions	about
this	book.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

Acknowledgments
Brendan	would	like	to	thank	his	wonderful	family,	Robin,	Julia,	and	Ethan,	for
the	love	and	support	of	everything	he	does;	the	Kubernetes	community,	without
whom	none	of	this	would	be	possible;	and	his	fabulous	coauthors,	without	whom
this	book	would	not	exist.

Dave	would	like	to	thank	his	beautiful	wife,	Jen,	and	their	three	children,	Max,
Maddie,	and	Mason,	for	all	of	their	support.	He	would	also	like	to	thank	the
Kubernetes	community	for	all	the	advice	and	help	they	have	provided	over	the
years.	Finally,	he	would	like	to	thank	his	coauthors	in	making	this	adventure	a

https://oreil.ly/KubBP
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

reality.

Lachlan	would	like	to	thank	his	wife	and	three	children	for	their	love	and
support.	He	would	also	like	to	thank	everyone	in	the	Kubernetes	community,
including	the	wonderful	individuals	who	have	taken	the	time	to	teach	him	over
the	years.	He	also	would	like	to	send	a	special	thanks	to	Joseph	Sandoval	for	his
mentorship.	And,	finally,	he	would	like	to	thank	his	fantastic	coauthors	for
making	this	book	possible.

Eddie	would	like	to	thank	his	wife,	Sandra,	for	her	moral	support	and	for	letting
him	disappear	for	hours	on	end	to	write	while	she	was	in	the	final	trimester	of
their	first	pregnancy.	He	would	also	like	to	thank	his	new	daughter,	Giavanna,
for	giving	him	the	drive	to	push	forward.	Finally,	he	would	like	to	thank	the
Kubernetes	community	and	his	coauthors	who	have	always	been	guideposts	in
his	journey	to	be	cloud	native.

We	would	all	like	to	thank	Virginia	Wilson	for	her	work	in	developing	the
manuscript	and	helping	us	bring	all	of	our	ideas	together,	and	Bridget	Kromhout,
Bilgin	Ibryam,	Roland	Huß,	and	Justin	Domingus	for	their	attention	to	the
finishing	touches.

Chapter	1.	Setting	Up	a	Basic
Service

This	chapter	describes	the	practices	for	setting	up	a	simple	multitier	application
in	Kubernetes.	The	application	consists	of	a	simple	web	application	and	a
database.	Though	this	might	not	be	the	most	complicated	application,	it	is	a	good
place	to	start	to	orient	to	managing	an	application	in	Kubernetes.

Application	Overview
The	application	that	we	will	use	for	our	sample	isn’t	particularly	complex.	It’s	a
simple	journal	service	that	stores	its	data	in	a	Redis	backend.	It	has	a	separate
static	file	server	using	NGINX.	It	presents	two	web	paths	on	a	single	URL.	The
paths	are	one	for	the	journal’s	RESTful	application	programming	interface
(API),	https://my-host.io/api,	and	a	file	server	on	the	main	URL,	https://my-
host.io.	It	uses	the	Let’s	Encrypt	service	for	managing	Secure	Sockets	Layer
(SSL)	certificates.	Figure	1-1	presents	a	diagram	of	the	application.	Throughout
this	chapter,	we	build	up	this	application,	first	using	YAML	configuration	files
and	then	Helm	charts.

https://my-host.io/api
https://my-host.io
https://letsencrypt.org

Figure	1-1.	An	application	diagram

Managing	Configuration	Files
Before	we	get	into	the	details	of	how	to	construct	this	application	in	Kubernetes,
it	is	worth	discussing	how	we	manage	the	configurations	themselves.	With
Kubernetes,	everything	is	represented	declaratively.	This	means	that	you	write
down	the	desired	state	of	the	application	in	the	cluster	(generally	in	YAML	or
JSON	files),	and	these	declared	desired	states	define	all	of	the	pieces	of	your
application.	This	declarative	approach	is	far	preferable	to	an	imperative
approach	in	which	the	state	of	your	cluster	is	the	sum	of	a	series	of	changes	to
the	cluster.	If	a	cluster	is	configured	imperatively,	it	is	very	difficult	to
understand	and	replicate	how	the	cluster	came	to	be	in	that	state.	This	makes	it
very	challenging	to	understand	or	recover	from	problems	with	your	application.

When	declaring	the	state	of	your	application,	people	typically	prefer	YAML	to
JSON,	though	Kubernetes	supports	them	both.	This	is	because	YAML	is

somewhat	less	verbose	and	more	human	editable	than	JSON.	However,	it’s
worth	noting	that	YAML	is	indentation	sensitive;	often	errors	in	Kubernetes
configurations	can	be	traced	to	incorrect	indentation	in	YAML.	If	things	aren’t
behaving	as	expected,	indentation	is	a	good	thing	to	check.

Because	the	declarative	state	contained	in	these	YAML	files	serves	as	the	source
of	truth	for	your	application,	correct	management	of	this	state	is	critical	to	the
success	of	your	application.	When	modifying	your	application’s	desired	state,
you	will	want	to	be	able	to	manage	changes,	validate	that	they	are	correct,	audit
who	made	changes,	and	possibly	roll	things	back	if	they	fail.	Fortunately,	in	the
context	of	software	engineering,	we	have	already	developed	the	tools	necessary
to	manage	both	changes	to	the	declarative	state	as	well	as	audit	and	rollback.
Namely,	the	best	practices	around	both	version	control	and	code	review	directly
apply	to	the	task	of	managing	the	declarative	state	of	your	application.

These	days	most	people	store	their	Kubernetes	configurations	in	Git.	Though	the
specific	details	of	the	version	control	system	are	unimportant,	many	tools	in	the
Kubernetes	ecosystem	expect	files	in	a	Git	repository.	For	code	review	there	is
much	more	heterogeneity,	though	clearly	GitHub	is	quite	popular,	others	use	on-
premises	code	review	tools	or	services.	Regardless	of	how	you	implement	code
review	for	your	application	configuration,	you	should	treat	it	with	the	same
diligence	and	focus	that	you	apply	to	source	control.

When	it	comes	to	laying	out	the	filesystem	for	your	application,	it’s	generally
worthwhile	to	use	the	folder	organization	that	comes	with	the	filesystem	to
organize	your	components.	Typically,	a	single	directory	is	used	to	encompass	an
Application	Service	for	whatever	definition	of	Application	Service	is	useful	for
your	team.	Within	that	directory,	subdirectories	are	used	for	subcomponents	of
the	application.

For	our	application,	we	lay	out	the	files	as	follows:

journal/
 frontend/
 redis/
 fileserver/

Within	each	directory	are	the	concrete	YAML	files	needed	to	define	the	service.
As	you’ll	see	later	on,	as	we	begin	to	deploy	our	application	to	multiple	different

regions	or	clusters,	this	file	layout	will	become	more	complicated.

Creating	a	Replicated	Service	Using
Deployments
To	describe	our	application,	we’ll	begin	at	the	frontend	and	work	downward.
The	frontend	application	for	the	journal	is	a	Node.js	application	implemented	in
TypeScript.	The	complete	application	is	slightly	too	large	to	include	in	the	book.
The	application	exposes	an	HTTP	service	on	port	8080	that	serves	requests	to
the	/api/*	path	and	uses	the	Redis	backend	to	add,	delete,	or	return	the	current
journal	entries.	This	application	can	be	built	into	a	container	image	using	the
included	Dockerfile	and	pushed	to	your	own	image	repository.	Then,	substitute
this	image	name	in	the	YAML	examples	that	follow.

Best	Practices	for	Image	Management
Though	in	general,	building	and	maintaining	container	images	is	beyond	the
scope	of	this	book,	it’s	worthwhile	to	identify	some	general	best	practices	for
building	and	naming	images.	In	general,	the	image	build	process	can	be
vulnerable	to	“supply-chain	attacks.”	In	such	attacks,	a	malicious	user	injects
code	or	binaries	into	some	dependency	from	a	trusted	source	that	is	then	built
into	your	application.	Because	of	the	risk	of	such	attacks,	it	is	critical	that	when
you	build	your	images	you	base	them	on	only	well-known	and	trusted	image
providers.	Alternately,	you	can	build	all	your	images	from	scratch.	Building
from	scratch	is	easy	for	some	languages	(e.g.,	Go)	that	can	build	static	binaries,
but	it	is	significantly	more	complicated	for	interpreted	languages	like	Python,
JavaScript,	or	Ruby.

The	other	best	practices	for	images	relate	to	naming.	Though	the	version	of	a
container	image	in	an	image	registry	is	theoretically	mutable,	you	should	treat
the	version	tag	as	immutable.	In	particular,	some	combination	of	the	semantic
version	and	the	SHA	hash	of	the	commit	where	the	image	was	built	is	a	good
practice	for	naming	images	(e.g.,	v1.0.1-bfeda01f).	If	you	don’t	specify	an	image
version,	latest	is	used	by	default.	Although	this	can	be	convenient	in
development,	it	is	a	bad	idea	for	production	usage	because	latest	is	clearly
being	mutated	every	time	a	new	image	is	built.

https://oreil.ly/70kFT

Creating	a	Replicated	Application
Our	frontend	application	is	stateless;	it	relies	entirely	on	the	Redis	backend	for
its	state.	As	a	result,	we	can	replicate	it	arbitrarily	without	affecting	traffic.
Though	our	application	is	unlikely	to	sustain	large-scale	usage,	it’s	still	a	good
idea	to	run	with	at	least	two	replicas	so	that	you	can	handle	an	unexpected	crash
or	roll	out	a	new	version	of	the	application	without	downtime.

Though	in	Kubernetes,	a	ReplicaSet	is	the	resource	that	manages	replicating	a
containerized	application,	so	it	is	not	a	best	practice	to	use	it	directly.	Instead,
you	use	the	Deployment	resource.	A	Deployment	combines	the	replication
capabilities	of	ReplicaSet	with	versioning	and	the	ability	to	perform	a	staged
rollout.	By	using	a	Deployment	you	can	use	Kubernetes’	built-in	tooling	to
move	from	one	version	of	the	application	to	the	next.

The	Kubernetes	Deployment	resource	for	our	application	looks	as	follows:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 app: frontend
 name: frontend
 namespace: default
spec:
 replicas: 2
 selector:
 matchLabels:
 app: frontend
 template:
 metadata:
 labels:
 app: frontend
 spec:
 containers:
 - image: my-repo/journal-server:v1-abcde
 imagePullPolicy: IfNotPresent
 name: frontend
 resources:
 request:
 cpu: "1.0"
 memory: "1G"
 limits:
 cpu: "1.0"
 memory: "1G"

There	are	several	things	to	note	in	this	Deployment.	First	is	that	we	are	using
Labels	to	identify	the	Deployment	as	well	as	the	ReplicaSets	and	the	pods	that
the	Deployment	creates.	We’ve	added	the	layer: frontend	label	to	all	of	these
resources	so	that	we	can	examine	all	resources	for	a	particular	layer	in	a	single
request.	You’ll	see	that	as	we	add	other	resources,	we’ll	follow	the	same
practice.

Additionally,	we’ve	added	comments	in	a	number	of	places	in	the	YAML.
Although	these	comments	don’t	make	it	into	the	Kubernetes	resource	stored	on
the	server,	just	like	comments	in	code,	they	serve	to	help	guide	people	who	are
looking	at	this	configuration	for	the	first	time.

You	should	also	note	that	for	the	containers	in	the	Deployment	we	have	specified
both	Request	and	Limit	resource	requests,	and	we’ve	set	Request	equal	to	Limit.
When	running	an	application,	the	Request	is	the	reservation	that	is	guaranteed	on
the	host	machine	where	it	runs.	The	Limit	is	the	maximum	resource	usage	that
the	container	will	be	allowed.	When	you	are	starting	out,	setting	Request	equal
to	Limit	will	lead	to	the	most	predictable	behavior	of	your	application.	This
predictability	comes	at	the	expense	of	resource	utilization.	Because	setting
Request	equal	to	Limit	prevents	your	applications	from	overscheduling	or
consuming	excess	idle	resources,	you	will	not	be	able	to	drive	maximal
utilization	unless	you	tune	Request	and	Limit	very,	very	carefully.	As	you
become	more	advanced	in	your	understanding	of	the	Kubernetes	resource	model,
you	might	consider	modifying	Request	and	Limit	for	your	application
independently,	but	in	general	most	users	find	that	the	stability	from	predictability
is	worth	the	reduced	utilization.

Now	that	we	have	the	Deployment	resource	defined,	we’ll	check	it	into	version
control,	and	deploy	it	to	Kubernetes:

git add frontend/deployment.yaml
git commit -m "Added deployment" frontend/deployment.yaml
kubectl apply -f frontend/deployment.yaml

It	is	also	a	best	practice	to	ensure	that	the	contents	of	your	cluster	exactly	match
the	contents	of	your	source	control.	The	best	pattern	to	ensure	this	is	to	adopt	a
GitOps	approach	and	deploy	to	production	only	from	a	specific	branch	of	your
source	control,	using	Continuous	Integration	(CI)/Continuous	Delivery	(CD)

automation.	In	this	way	you’re	guaranteed	that	source	control	and	production
match.	Though	a	full	CI/CD	pipeline	might	seem	excessive	for	a	simple
application,	the	automation	by	itself,	independent	of	the	reliability	it	provides,	is
usually	worth	the	time	taken	to	set	it	up.	And	CI/CD	is	extremely	difficult	to
retrofit	into	an	existing,	imperatively	deployed	application.

There	are	also	some	pieces	of	this	application	description	YAML	(e.g.,	the
ConfigMap	and	secret	volumes)	as	well	as	pod	Quality	of	Service	that	we
examine	in	later	sections.

Setting	Up	an	External	Ingress	for	HTTP	Traffic
The	containers	for	our	application	are	now	deployed,	but	it’s	not	currently
possible	for	anyone	to	access	the	application.	By	default,	cluster	resources	are
available	only	within	the	cluster	itself.	To	expose	our	application	to	the	world,
we	need	to	create	a	Service	and	load	balancer	to	provide	an	external	IP	address
and	to	bring	traffic	to	our	containers.	For	the	external	exposure	we	are	actually
going	to	use	two	Kubernetes	resources.	The	first	is	a	Service	that	load-balances
Transmission	Control	Protocol	(TCP)	or	User	Datagram	Protocol	(UDP)	traffic.
In	our	case,	we’re	using	the	TCP	protocol.	And	the	second	is	an	Ingress
resource,	which	provides	HTTP(S)	load	balancing	with	intelligent	routing	of
requests	based	on	HTTP	paths	and	hosts.	With	a	simple	application	like	this,	you
might	wonder	why	we	choose	to	use	the	more	complex	Ingress,	but	as	you’ll	see
in	later	sections,	even	this	simple	application	will	be	serving	HTTP	requests
from	two	different	services.	Furthermore,	having	an	Ingress	at	the	edge	enables
flexibility	for	future	expansion	of	our	service.

Before	the	Ingress	resource	can	be	defined,	there	needs	to	be	a	Kubernetes
Service	for	the	Ingress	to	point	to.	We’ll	use	Labels	to	direct	the	Service	to	the
pods	that	we	created	in	the	previous	section.	The	Service	is	significantly	simpler
to	define	than	the	Deployment	and	looks	as	follows:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: frontend
 name: frontend

 namespace: default
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 selector:
 app: frontend
 type: ClusterIP

After	you’ve	defined	the	Service,	you	can	define	an	Ingress	resource.	Unlike
Service	resources,	Ingress	requires	an	Ingress	controller	container	to	be	running
in	the	cluster.	There	are	a	number	of	different	implementations	you	can	choose
from,	either	provided	by	your	cloud	provider,	or	implemented	using	open	source
servers.	If	you	choose	to	install	an	open	source	ingress	provider,	it’s	a	good	idea
to	use	the	Helm	package	manager	to	install	and	maintain	it.	The	nginx	or
haproxy	Ingress	providers	are	popular	choices:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: frontend-ingress
spec:
 rules:
 - http:
 paths:
 - path: /api
 backend:
 serviceName: frontend
 servicePort: 8080

Configuring	an	Application	with	ConfigMaps
Every	application	needs	a	degree	of	configuration.	This	could	be	the	number	of
journal	entries	to	display	per	page,	the	color	of	a	particular	background,	a	special
holiday	display,	or	many	other	types	of	configuration.	Typically,	separating	such
configuration	information	from	the	application	itself	is	a	best	practice	to	follow.

There	are	a	couple	of	different	reasons	for	this	separation.	The	first	is	that	you
might	want	to	configure	the	same	application	binary	with	different
configurations	depending	on	the	setting.	In	Europe	you	might	want	to	light	up	an

https://helm.sh

Easter	special,	whereas	in	China	you	might	want	to	display	a	special	for	Chinese
New	Year.	In	addition	to	this	environmental	specialization,	there	are	agility
reasons	for	the	separation.	Usually	a	binary	release	contains	multiple	different
new	features;	if	you	turn	on	these	features	via	code,	the	only	way	to	modify	the
active	features	is	to	build	and	release	a	new	binary,	which	can	be	an	expensive
and	slow	process.

The	use	of	configuration	to	activate	a	set	of	features	means	that	you	can	quickly
(and	even	dynamically)	activate	and	deactivate	features	in	response	to	user	needs
or	application	code	failures.	Features	can	be	rolled	out	and	rolled	back	on	a	per-
feature	basis.	This	flexibility	ensures	that	you	are	continually	making	forward
progress	with	most	features	even	if	some	need	to	be	rolled	back	to	address
performance	or	correctness	problems.

In	Kubernetes	this	sort	of	configuration	is	represented	by	a	resource	called	a
ConfigMap.	A	ConfigMap	contains	multiple	key/value	pairs	representing
configuration	information	or	a	file.	This	configuration	information	can	be
presented	to	a	container	in	a	pod	via	either	files	or	environment	variables.
Imagine	that	you	want	to	configure	your	online	journal	application	to	display	a
configurable	number	of	journal	entries	per	page.	To	achieve	this,	you	can	define
a	ConfigMap	as	follows:

kubectl create configmap frontend-config --from-literal=journalEntries=10

To	configure	your	application,	you	expose	the	configuration	information	as	an
environment	variable	in	the	application	itself.	To	do	that,	you	can	add	the
following	to	the	container	resource	in	the	Deployment	that	you	defined	earlier:

...
The containers array in the PodTemplate inside the Deployment
containers:
 - name: frontend
 ...
 env:
 - name: JOURNAL_ENTRIES
 valueFrom:
 configMapKeyRef:
 name: frontend-config
 key: journalEntries
...

Although	this	demonstrates	how	you	can	use	a	ConfigMap	to	configure	your
application,	in	the	real	world	of	Deployments,	you’ll	want	to	roll	out	regular
changes	to	this	configuration	with	weekly	rollouts	or	even	more	frequently.	It
might	be	tempting	to	roll	this	out	by	simply	changing	the	ConfigMap	itself,	but
this	isn’t	really	a	best	practice.	There	are	several	reasons	for	this:	the	first	is	that
changing	the	configuration	doesn’t	actually	trigger	an	update	to	existing	pods.
Only	when	the	pod	is	restarted	is	the	configuration	applied.	Because	of	this,	the
rollout	isn’t	health	based	and	can	be	ad	hoc	or	random.

A	better	approach	is	to	put	a	version	number	in	the	name	of	the	ConfigMap
itself.	Instead	of	calling	it	frontend-config,	call	it	frontend-config-v1.
When	you	want	to	make	a	change,	instead	of	updating	the	ConfigMap	in	place,
you	create	a	new	v2	ConfigMap,	and	then	update	the	Deployment	resource	to
use	that	configuration.	When	you	do	this,	a	Deployment	rollout	is	automatically
triggered,	using	the	appropriate	health	checking	and	pauses	between	changes.
Furthermore,	if	you	ever	need	to	rollback,	the	v1	configuration	is	sitting	in	the
cluster	and	rollback	is	as	simple	as	updating	the	Deployment	again.

Managing	Authentication	with	Secrets
So	far,	we	haven’t	really	discussed	the	Redis	service	to	which	our	frontend	is
connecting.	But	in	any	real	application	we	need	to	secure	connections	between
our	services.	In	part	this	is	to	ensure	the	security	of	users	and	their	data,	and	in
addition,	it	is	essential	to	prevent	mistakes	like	connecting	a	development
frontend	with	a	production	database.

The	Redis	database	is	authenticated	using	a	simple	password.	It	might	be
convenient	to	think	that	you	would	store	this	password	in	the	source	code	of
your	application,	or	in	a	file	in	your	image,	but	these	are	both	bad	ideas	for	a
variety	of	reasons.	The	first	is	that	you	have	leaked	your	secret	(the	password)
into	an	environment	where	you	aren’t	necessarily	thinking	about	access	control.
If	you	put	a	password	into	your	source	control,	you	are	aligning	access	to	your
source	with	access	to	all	secrets.	This	is	probably	not	correct.	You	probably	will
have	a	broader	set	of	users	who	can	access	your	source	code	than	should	really
have	access	to	your	Redis	instance.	Likewise,	someone	who	has	access	to	your
container	image	shouldn’t	necessarily	have	access	to	your	production	database.

In	addition	to	concerns	about	access	control,	another	reason	to	avoid	binding
secrets	to	source	control	and/or	images	is	parameterization.	You	want	to	be	able
to	use	the	same	source	code	and	images	in	a	variety	of	environments	(e.g.,
development,	canary,	and	production).	If	the	secrets	are	tightly	bound	in	source
code	or	image,	you	need	a	different	image	(or	different	code)	for	each
environment.

Having	seen	ConfigMaps	in	the	previous	section,	you	might	immediately	think
that	the	password	could	be	stored	as	a	configuration	and	then	populated	into	the
application	as	an	application-specific	configuration.	You’re	absolutely	correct	to
believe	that	the	separation	of	configuration	from	application	is	the	same	as	the
separation	of	secrets	from	application.	But	the	truth	is	that	a	secret	is	an
important	concept	by	itself.	You	likely	want	to	handle	access	control,	handling,
and	updates	of	secrets	in	a	different	way	than	a	configuration.	More	important,
you	want	your	developers	thinking	differently	when	they	are	accessing	secrets
than	when	they	are	accessing	configuration.	For	these	reasons,	Kubernetes	has	a
built-in	Secret	resource	for	managing	secret	data.

You	can	create	a	secret	password	for	your	Redis	database	as	follows:

kubectl create secret generic redis-passwd --from-literal=passwd=${RANDOM}

Obviously,	you	might	want	to	use	something	other	than	a	random	number	for
your	password.	Additionally,	you	likely	want	to	use	a	secret/key	management
service,	either	via	your	cloud	provider,	like	Microsoft	Azure	Key	Vault,	or	an
open	source	project,	like	HashiCorp’s	Vault.	When	you	are	using	a	key
management	service,	they	generally	have	tighter	integration	with	Kubernetes
secrets.

NOTE
Secrets	in	Kubernetes	are	stored	unecrypted	by	default.	If	you	want	to	store	secrets	encrypted,
you	can	integrate	with	a	key	provider	to	give	you	a	key	that	Kubernetes	will	use	to	encrypt	all
of	the	secrets	in	the	cluster.	Note	that	although	this	secures	the	keys	against	direct	attacks	to	the
etcd	database,	you	still	need	to	ensure	that	access	via	the	Kubernetes	API	server	is	properly
secured.

After	you	have	stored	the	Redis	password	as	a	secret	in	Kubernetes,	you	then
need	to	bind	that	secret	to	the	running	application	when	deployed	to	Kubernetes.
To	do	this,	you	can	use	a	Kubernetes	Volume.	A	Volume	is	effectively	a	file	or
directory	that	can	be	mounted	into	a	running	container	at	a	user-specified
location.	In	the	case	of	secrets,	the	Volume	is	created	as	a	tmpfs	RAM-backed
filesystem	and	then	mounted	into	the	container.	This	ensures	that	even	if	the
machine	is	physically	compromised	(quite	unlikely	in	the	cloud,	but	possible	in
the	datacenter),	the	secrets	are	much	more	difficult	to	obtain	by	the	attacker.

To	add	a	secret	volume	to	a	Deployment,	you	need	to	specify	two	new	entries	in
the	YAML	for	the	Deployment.	The	first	is	a	volume	entry	for	the	pod	that	adds
the	volume	to	the	pod:

...
 volumes:
 - name: passwd-volume
 secret:
 secretName: redis-passwd

With	the	volume	in	the	pod,	you	need	to	mount	it	into	a	specific	container.	You
do	this	via	the	volumeMounts	field	in	the	container	description:

...
 volumeMounts:
 - name: passwd-volume
 readOnly: true
 mountPath: "/etc/redis-passwd"
...

This	mounts	the	secret	volume	into	the	redis-passwd	directory	for	access	from
the	client	code.	Putting	this	all	together,	you	have	the	complete	Deployment	as
follows:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 app: frontend
 name: frontend
 namespace: default
spec:

 replicas: 2
 selector:
 matchLabels:
 app: frontend
 template:
 metadata:
 labels:
 app: frontend
 spec:
 containers:
 - image: my-repo/journal-server:v1-abcde
 imagePullPolicy: IfNotPresent
 name: frontend
 volumeMounts:
 - name: passwd-volume
 readOnly: true
 mountPath: "/etc/redis-passwd"
 resources:
 request:
 cpu: "1.0"
 memory: "1G"
 limits:
 cpu: "1.0"
 memory: "1G"
 volumes:
 - name: passwd-volume
 secret:
 secretName: redis-passwd

At	this	point	we	have	configured	the	client	application	to	have	a	secret	available
to	authenticate	to	the	Redis	service.	Configuring	Redis	to	use	this	password	is
similar;	we	mount	it	into	the	Redis	pod	and	load	the	password	from	the	file.

Deploying	a	Simple	Stateful	Database
Although	conceptually	deploying	a	stateful	application	is	similar	to	deploying	a
client	like	our	frontend,	state	brings	with	it	more	complications.	The	first	is	that
in	Kubernetes	a	pod	can	be	rescheduled	for	a	number	of	reasons,	such	as	node
health,	an	upgrade,	or	rebalancing.	When	this	happens,	the	pod	might	move	to	a
different	machine.	If	the	data	associated	with	the	Redis	instance	is	located	on
any	particular	machine	or	within	the	container	itself,	that	data	will	be	lost	when
the	container	migrates	or	restarts.	To	prevent	this,	when	running	stateful
workloads	in	Kubernetes	its	important	to	use	remote	PersistentVolumes	to

manage	the	state	associated	with	the	application.

There	is	a	wide	variety	of	different	implementations	of	PersistentVolumes	in
Kubernetes,	but	they	all	share	common	characteristics.	Like	secret	volumes
described	earlier,	they	are	associated	with	a	pod	and	mounted	into	a	container	at
a	particular	location.	Unlike	secrets,	PersistentVolumes	are	generally	remote
storage	mounted	through	some	sort	of	network	protocol,	either	file	based,	such
as	Network	File	System	(NFS)	or	Server	Message	Block	(SMB),	or	block	based
(iSCSI,	cloud-based	disks,	etc.).	Generally,	for	applications	such	as	databases,
block-based	disks	are	preferable	because	they	generally	offer	better
performance,	but	if	performance	is	less	of	a	consideration,	file-based	disks	can
sometimes	offer	greater	flexibility.

NOTE
Managing	state	in	general	is	complicated,	and	Kubernetes	is	no	exception.	If	you	are	running
in	an	environment	that	supports	stateful	services	(e.g.,	MySQL	as	a	service,	Redis	as	a
service),	it	is	generally	a	good	idea	to	use	those	stateful	services.	Initially,	the	cost	premium	of
a	stateful	Software	as	a	Service	(SaaS)	might	seem	expensive,	but	when	you	factor	in	all	the
operational	requirements	of	state	(backup,	data	locality,	redundancy,	etc.),	and	the	fact	that	the
presence	of	state	in	a	Kubernetes	cluster	makes	it	difficult	to	move	applications	between
clusters,	it	becomes	clear	that,	in	most	cases,	storage	SaaS	is	worth	the	price	premium.	In	on-
premises	environments	where	storage	SaaS	isn’t	available,	having	a	dedicated	team	provide
storage	as	a	service	to	the	entire	organization	is	definitely	a	better	practice	than	allowing	each
team	to	roll	its	own.

To	deploy	our	Redis	service,	we	use	a	StatefulSet	resource.	Added	after	the
initial	Kubernetes	release	as	a	complement	to	ReplicaSet	resources,	a	StatefulSet
gives	slightly	stronger	guarantees	such	as	consistent	names	(no	random	hashes!)
and	a	defined	order	for	scale-up	and	scale-down.	When	you	are	deploying	a
singleton,	this	is	somewhat	less	important,	but	when	you	want	to	deploy
replicated	state,	these	attributes	are	very	convenient.

To	obtain	a	PersistentVolume	for	our	Redis,	we	use	a	PersistentVolumeClaim.
You	can	think	of	a	claim	as	a	“request	for	resources.”	Our	Redis	declares
abstractly	that	it	wants	50	GB	of	storage,	and	the	Kubernetes	cluster	determines
how	to	provision	an	appropriate	PersistentVolume.	There	are	two	reasons	for
this.	The	first	is	so	that	we	can	write	a	StatefulSet	that	is	portable	between

different	clouds	and	on-premises,	where	the	details	of	disks	might	be	different.
The	other	reason	is	that	although	many	PersistentVolume	types	can	be	mounted
to	only	a	single	pod,	we	can	use	volume	claims	to	write	a	template	that	can	be
replicated	and	yet	have	each	pod	assigned	its	own	specific	PersistentVolume.

The	following	example	shows	a	Redis	StatefulSet	with	PersistentVolumes:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: redis
spec:
 serviceName: "redis"
 replicas: 1
 selector:
 matchLabels:
 app: redis
 template:
 metadata:
 labels:
 app: redis
 spec:
 containers:
 - name: redis
 image: redis:5-alpine
 ports:
 - containerPort: 6379
 name: redis
 volumeMounts:
 - name: data
 mountPath: /data
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 10Gi

This	deploys	a	single	instance	of	your	Redis	service,	but	suppose	you	want	to
replicate	the	Redis	cluster	for	scale-out	of	reads	and	resiliency	to	failures.	To	do
this	you	need	to	obviously	increase	the	number	of	replicas	to	three,	but	you	also
need	to	ensure	that	the	two	new	replicas	connect	to	the	write	master	for	Redis.

When	you	create	the	headless	Service	for	the	Redis	StatefulSet,	it	creates	a	DNS

entry	redis-0.redis;	this	is	the	IP	address	of	the	first	replica.	You	can	use	this
to	create	a	simple	script	that	can	launch	in	all	of	the	containters:

#!/bin/bash

PASSWORD=$(cat /etc/redis-passwd/passwd)

if [["${HOSTNAME}" == "redis-0"]]; then
 redis-server --requirepass ${PASSWORD}
else
 redis-server --slaveof redis-0.redis 6379 --masterauth ${PASSWORD} --requirepass
${PASSWORD}
fi

You	can	create	this	script	as	a	ConfigMap:

kubectl create configmap redis-config --from-file=launch.sh=launch.sh

You	then	add	this	ConfigMap	to	your	StatefulSet	and	use	it	as	the	command	for
the	container.	Let’s	also	add	in	the	password	for	authentication	that	we	created
earlier	in	the	chapter.

The	complete	three-replica	Redis	looks	as	follows:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: redis
spec:
 serviceName: "redis"
 replicas: 3
 selector:
 matchLabels:
 app: redis
 template:
 metadata:
 labels:
 app: redis
 spec:
 containers:
 - name: redis
 image: redis:5-alpine
 ports:
 - containerPort: 6379
 name: redis

 volumeMounts:
 - name: data
 mountPath: /data
 - name: script
 mountPath: /script/launch.sh
 subPath: launch.sh
 - name: passwd-volume
 mountPath: /etc/redis-passwd
 command:
 - sh
 - -c
 - /script/launch.sh
 volumes:
 - name: script
 configMap:
 name: redis-config
 defaultMode: 0777
 - name: passwd-volume
 secret:
 secretName: redis-passwd
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 10Gi

Creating	a	TCP	Load	Balancer	by	Using	Services
Now	that	we’ve	deployed	the	stateful	Redis	service,	we	need	to	make	it	available
to	our	frontend.	To	do	this,	we	create	two	different	Kubernetes	Services.	The
first	is	the	Service	for	reading	data	from	Redis.	Because	Redis	is	replicating	the
data	to	all	three	members	of	the	StatefulSet,	we	don’t	care	which	read	our
request	goes	to.	Consequently,	we	use	a	basic	Service	for	the	reads:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: redis
 name: redis
 namespace: default
spec:
 ports:

 - port: 6379
 protocol: TCP
 targetPort: 6379
 selector:
 app: redis
 sessionAffinity: None
 type: ClusterIP

To	enable	writes,	you	need	to	target	the	Redis	master	(replica	#0).	To	do	this,
create	a	headless	Service.	A	headless	Service	doesn’t	have	a	cluster	IP	address;
instead,	it	programs	a	DNS	entry	for	every	pod	in	the	StatefulSet.	This	means
that	we	can	access	our	master	via	the	redis-0.redis	DNS	name:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: redis-write
 name: redis-write
spec:
 clusterIP: None
 ports:
 - port: 6379
 selector:
 app: redis

Thus,	when	we	want	to	connect	to	Redis	for	writes	or	transactional	read/write
pairs,	we	can	build	a	separate	write	client	connected	to	the	redis-0.redis
server.

Using	Ingress	to	Route	Traffic	to	a	Static	File
Server
The	final	component	in	our	application	is	a	static	file	server.	The	static	file
server	is	responsible	for	serving	HTML,	CSS,	JavaScript,	and	image	files.	It’s
both	more	efficient	and	more	focused	for	us	to	separate	static	file	serving	from
our	API	serving	frontend	described	earlier.	We	can	easily	use	a	high-
performance	static	off-the-shelf	file	server	like	NGINX	to	serve	files	while	we
allow	our	development	teams	to	focus	on	the	code	needed	to	implement	our	API.

Fortunately,	the	Ingress	resource	makes	this	source	of	mini-microservice

architecture	very	easy.	Just	like	the	frontend,	we	can	use	a	Deployment	resource
to	describe	a	replicated	NGINX	server.	Let’s	build	the	static	images	into	the
NGINX	container	and	deploy	them	to	each	replica.	The	Deployment	resource
looks	as	follows:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 app: fileserver
 name: fileserver
 namespace: default
spec:
 replicas: 2
 selector:
 matchLabels:
 app: fileserver
 template:
 metadata:
 labels:
 app: fileserver
 spec:
 containers:
 - image: my-repo/static-files:v1-abcde
 imagePullPolicy: Always
 name: fileserver
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 resources:
 request:
 cpu: "1.0"
 memory: "1G"
 limits:
 cpu: "1.0"
 memory: "1G"
 dnsPolicy: ClusterFirst
 restartPolicy: Always

Now	that	there	is	a	replicated	static	web	server	up	and	running,	you	will	likewise
create	a	Service	resource	to	act	as	a	load	balancer:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: frontend

 name: frontend
 namespace: default
spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 selector:
 app: frontend
 sessionAffinity: None
 type: ClusterIP

Now	that	you	have	a	Service	for	your	static	file	server,	extend	the	Ingress
resource	to	contain	the	new	path.	It’s	important	to	note	that	you	must	place	the	/
path	after	the	/api	path,	or	else	it	would	subsume	/api	and	direct	API	requests
to	the	static	file	server.	The	new	Ingress	looks	like	this:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: frontend-ingress
spec:
 rules:
 - http:
 paths:
 - path: /api
 backend:
 serviceName: frontend
 servicePort: 8080
 # NOTE: this should come after /api or else it will hijack requests
 - path: /
 backend:
 serviceName: nginx
 servicePort: 80

Parameterizing	Your	Application	by	Using	Helm
Everything	that	we	have	discussed	so	far	focuses	on	deploying	a	single	instance
of	our	service	to	a	single	cluster.	However,	in	reality,	nearly	every	service	and
every	service	team	is	going	to	need	to	deploy	to	multiple	different	environments
(even	if	they	share	a	cluster).	Even	if	you	are	a	single	developer	working	on	a
single	application,	you	likely	want	to	have	at	least	a	development	version	and	a
production	version	of	your	application	so	that	you	can	iterate	and	develop

without	breaking	production	users.	After	you	factor	in	integration	testing	and
CI/CD,	it’s	likely	that	even	with	a	single	service	and	a	handful	of	developers,
you’ll	want	to	deploy	to	at	least	three	different	environments,	and	possibly	more
if	you	consider	handling	datacenter-level	failures.

An	initial	failure	mode	for	many	teams	is	to	simply	copy	the	files	from	one
cluster	to	another.	Instead	of	having	a	single	frontend/	directory,	have	a	frontend-
production/	and	frontend-development/	pair	of	directories.	The	reason	this	is	so
dangerous	is	because	you	are	now	in	charge	of	ensuring	that	these	files	remain
synchronized	with	one	another.	If	they	were	intended	to	be	entirely	identical,	this
might	be	easy,	but	some	skew	between	development	and	production	is	expected
because	you	will	be	developing	new	features;	it’s	critical	that	the	skew	is	both
intentional,	and	easily	managed.

Another	option	to	achieve	this	would	be	to	use	branches	and	version	control,
with	the	production	and	development	branches	leading	off	from	a	central
repository,	and	the	differences	between	the	branches	clearly	visible.	This	can	be
a	viable	option	for	some	teams,	but	the	mechanics	of	moving	between	branches
are	challenging	when	you	want	to	simultaneously	deploy	software	to	different
environments	(e.g.,	a	CI/CD	system	that	deploys	to	a	number	of	different	cloud
regions).

Consequently,	most	people	end	up	with	a	templating	system.	A	templating
system	combines	templates,	which	form	the	centralized	backbone	of	the
application	configuration,	with	parameters	that	specialize	the	template	to	a
specific	environment	configuration.	In	this	way,	you	can	have	a	generally	shared
configuration,	with	intentional	(and	easily	understood)	customization	as	needed.
There	are	a	variety	of	different	template	systems	for	Kubernetes,	but	the	most
popular	by	far	is	a	system	called	Helm.

In	Helm,	an	application	is	packaged	in	a	collection	of	files	called	a	chart
(nautical	jokes	abound	in	the	world	of	containers	and	Kubernetes).

A	chart	begins	with	a	chart.yaml	file,	which	defines	the	metadata	for	the	chart
itself:

apiVersion: v1
appVersion: "1.0"
description: A Helm chart for our frontend journal server.
name: frontend

https://helm.sh

version: 0.1.0

This	file	is	placed	in	the	root	of	the	chart	directory	(e.g.,	frontend/).	Within	this
directory,	there	is	a	templates	directory,	which	is	where	the	templates	are	placed.
A	template	is	basically	a	YAML	file	from	the	previous	examples,	with	some	of
the	values	in	the	file	replaced	with	parameter	references.	For	example,	imagine
that	you	want	to	parameterize	the	number	of	replicas	in	your	frontend.
Previously,	here’s	what	the	Deployment	had:

...
spec:
 replicas: 2
...

In	the	template	file	(frontend-deployment.tmpl),	it	instead	looks	like	the
following:

...
spec:
 replicas: {{ .replicaCount }}
...

This	means	that	when	you	deploy	the	chart,	you’ll	substitute	the	value	for
replicas	with	the	appropriate	parameter.	The	parameters	themselves	are	defined
in	a	values.yaml	file.	There	will	be	one	values	file	per	environment	where	the
application	should	be	deployed.	The	values	file	for	this	simple	chart	would	look
like	this:

replicaCount: 2

Putting	this	all	together,	you	can	deploy	this	chart	using	the	helm	tool,	as
follows:

helm install path/to/chart --values path/to/environment/values.yaml

This	parameterizes	your	application	and	deploys	it	to	Kubernetes.	Over	time
these	parameterizations	will	grow	to	encompass	the	variety	of	different
environments	for	your	application.

Deploying	Services	Best	Practices
Kubernetes	is	a	powerful	system	that	can	seem	complex.	But	setting	up	a	basic
application	for	success	can	be	straightforward	if	you	use	the	following	best
practices:

Most	services	should	be	deployed	as	Deployment	resources.
Deployments	create	identical	replicas	for	redundancy	and	scale.

Deployments	can	be	exposed	using	a	Service,	which	is	effectively	a
load	balancer.	A	Service	can	be	exposed	either	within	a	cluster	(the
default)	or	externally.	If	you	want	to	expose	an	HTTP	application,	you
can	use	an	Ingress	controller	to	add	things	like	request	routing	and	SSL.

Eventually	you	will	want	to	parameterize	your	application	to	make	its
configuration	more	reusable	in	different	environments.	Packaging	tools
like	Helm	are	the	best	choice	for	this	kind	of	parameterization.

Summary
The	application	built	in	this	chapter	is	a	simple	one,	but	it	contains	nearly	all	of
the	concepts	you’ll	need	to	build	larger,	more	complicated	applications.
Understanding	how	the	pieces	fit	together	and	how	to	use	foundational
Kubernetes	components	is	key	to	successfully	working	with	Kubernetes.

Laying	the	correct	foundation	via	version	control,	code	review,	and	continuous
delivery	of	your	service	ensures	that	no	matter	what	you	build,	it	is	built	in	a
solid	manner.	As	we	go	through	the	more	advanced	topics	in	subsequent
chapters,	keep	this	foundational	information	in	mind.

https://helm.sh

Chapter	2.	Developer	Workflows

Kubernetes	was	built	for	reliably	operating	software.	It	simplifies	deploying	and
managing	applications	with	an	application-oriented	API,	self-healing	properties,
and	useful	tools	like	Deployments	for	zero	downtime	rollout	of	software.
Although	all	of	these	tools	are	useful,	they	don’t	do	much	to	make	it	easier	to
develop	applications	for	Kubernetes.	Furthermore,	even	though	many	clusters
are	designed	to	run	production	applications	and	thus	are	rarely	accessed	by
developer	workflows,	it	is	also	critical	to	enable	development	workflows	to
target	Kubernetes,	and	this	typically	means	having	a	cluster	or	at	least	part	of	a
cluster	that	is	intended	for	development.	Setting	up	such	a	cluster	to	facilitate
easy	development	of	applications	for	Kubernetes	is	a	critical	part	of	ensuring
success	with	Kubernetes.	Clearly	if	there	is	no	code	being	built	for	your	cluster,
the	cluster	itself	isn’t	accomplishing	much.

Goals
Before	we	describe	the	best	practices	for	building	out	development	clusters,	it	is
worth	stating	our	goals	for	such	clusters.	Obviously,	the	ultimate	goal	is	to
enable	developers	to	rapidly	and	easily	build	applications	on	Kubernetes,	but
what	does	that	really	mean	in	practice	and	how	is	that	reflected	in	practical
features	of	the	development	cluster?

It	is	useful	to	identify	phases	of	developer	interaction	with	the	cluster.

The	first	phase	is	onboarding.	This	is	when	a	new	developer	joins	the	team.	This
phase	includes	giving	the	user	a	login	to	the	cluster	as	well	as	getting	them
oriented	to	their	first	deployment.	The	goal	for	this	phase	is	to	get	a	developer’s
feet	wet	in	a	minimal	amount	of	time.	You	should	set	a	key	performance
indicator	(KPI)	goal	for	this	process.	A	reasonable	goal	would	be	that	a	user
could	go	from	nothing	to	the	current	application	at	HEAD	running	in	less	than
half	an	hour.	Every	time	someone	is	new	to	the	team,	test	how	you	are	doing
against	this	goal.

The	second	phase	is	developing.	This	is	the	day-to-day	activities	of	the

developer.	The	goal	for	this	phase	is	to	ensure	rapid	iteration	and	debugging.
Developers	need	to	quickly	and	repeatedly	push	code	to	the	cluster.	They	also
need	to	be	able	to	easily	test	their	code	and	debug	it	when	it	isn’t	operating
properly.	The	KPI	for	this	phase	is	more	challenging	to	measure,	but	you	can
estimate	it	by	measuring	the	time	to	get	a	pull	request	(PR)	or	change	up	and
running	in	the	cluster,	or	with	surveys	of	the	user’s	perceived	productivity,	or
both.	You	will	also	be	able	to	measure	this	in	the	overall	productivity	of	your
teams.

The	third	phase	is	testing.	This	phase	is	interleaved	with	developing	and	is	used
to	validate	the	code	before	submission	and	merging.	The	goals	for	this	phase	are
two-fold.	First,	the	developer	should	be	able	to	run	all	tests	for	their	environment
before	a	PR	is	submitted.	Second,	all	tests	should	automatically	run	before	code
is	merged	into	the	repository.	In	addition	to	these	goals	you	should	also	set	a	KPI
for	the	length	of	time	the	tests	take	to	run.	As	your	project	becomes	more
complex,	it’s	natural	for	more	and	more	tests	to	take	a	longer	time.	As	this
happens,	it	might	become	valuable	to	identify	a	smaller	set	of	smoke	tests	that	a
developer	can	use	for	initial	validation	before	submitting	a	PR.	You	should	also
have	a	very	strict	KPI	around	test	flakiness.	A	flaky	test	is	one	that	occasionally
(or	not	so	occasionally)	fails.	In	any	reasonably	active	project,	a	flakiness	rate	of
more	than	one	failure	per	one	thousand	runs	will	lead	to	developer	friction.	You
need	to	ensure	that	your	cluster	environment	does	not	lead	to	flaky	tests.
Whereas	sometimes	flaky	tests	occur	due	to	problems	in	the	code,	they	can	also
occur	because	of	interference	in	the	development	environment	(e.g.,	running	out
of	resources	and	noisy	neighbors).	You	should	ensure	that	your	development
environment	is	free	of	such	issues	by	measuring	test	flakiness	and	acting	quickly
to	fix	it.

Building	a	Development	Cluster
When	people	begin	to	think	about	developing	on	Kubernetes,	one	of	the	first
choices	that	occurs	is	whether	to	build	a	single	large	development	cluster	or	to
have	one	cluster	per	developer.	Note	that	this	choice	only	makes	sense	in	an
environment	in	which	dynamic	cluster	creation	is	easy,	such	as	the	public	cloud.
In	physical	environments,	its	possible	that	one	large	cluster	is	the	only	choice.

If	you	do	have	a	choice	you	should	consider	the	pros	and	cons	of	each	option.	If
you	choose	to	have	a	development	cluster	per	user,	the	significant	downside	of
this	approach	is	that	it	will	be	more	expensive	and	less	efficient,	and	you	will
have	a	large	number	of	different	development	clusters	to	manage.	The	extra
costs	come	from	the	fact	that	each	cluster	is	likely	to	be	heavily	underutilized.
Also,	with	developers	creating	different	clusters,	it	becomes	more	difficult	to
track	and	garbage-collect	resources	that	are	no	longer	in	use.	The	advantage	of
the	cluster-per-user	approach	is	simplicity:	each	developer	can	self-service
manage	their	own	cluster,	and	from	isolation,	it’s	much	more	difficult	for
different	developers	to	step	on	one	another’s	toes.

On	the	other	hand,	a	single	development	cluster	will	be	significantly	more
efficient;	you	can	likely	sustain	the	same	number	of	developers	on	a	shared
cluster	for	one-third	the	price	(or	less).	Plus,	it’s	much	easier	for	you	to	install
shared	cluster	services,	for	example,	monitoring	and	logging,	which	makes	it
significantly	easier	to	produce	a	developer-friendly	cluster.	The	downside	of	a
shared	development	cluster	is	the	process	of	user	management	and	potential
interference	between	developers.	Because	the	process	of	adding	new	users	and
namespaces	to	the	Kubernetes	cluster	isn’t	currently	streamlined,	you	will	need
to	activate	a	process	to	onboard	new	developers.	Although	Kubernetes	resource
management	and	Role-Based	Access	Control	(RBAC)	can	reduce	the	probability
that	two	developers	conflict,	it	is	always	possible	that	a	user	will	brick	the
development	cluster	by	consuming	too	many	resources	so	that	other	applications
and	developers	won’t	schedule.	Additionally,	you	will	still	need	to	ensure	that
developers	don’t	leak	and	forget	about	resources	they’ve	created.	This	is
somewhat	easier,	though,	than	the	approach	in	which	developers	each	create
their	own	clusters.

Even	though	both	approaches	are	feasible,	generally,	our	recommendation	is	to
have	a	single	large	cluster	for	all	developers.	Although	there	are	challenges	in
interference	between	developers,	they	can	be	managed	and	ultimately	the	cost
efficiency	and	ability	to	easily	add	organization-wide	capabilities	to	the	cluster
outweigh	the	risks	of	interference.	But	you	will	need	to	invest	in	a	process	for
onboarding	developers,	resource	management,	and	garbage	collection.	Our
recommendation	would	be	to	try	a	single	large	cluster	as	a	first	option.	As	your
organization	grows	(or	if	it	is	already	large),	you	might	consider	having	a	cluster
per	team	or	group	(10	to	20	people)	rather	than	a	giant	cluster	for	hundreds	of

users.	This	can	make	both	billing	and	management	easier.

Setting	Up	a	Shared	Cluster	for	Multiple
Developers
When	setting	up	a	large	cluster,	the	primary	goal	is	to	ensure	that	multiple	users
can	simultaneously	use	the	cluster	without	stepping	on	one	another’s	toes.	The
obvious	way	to	separate	your	different	developers	is	with	Kubernetes
namespaces.	Namespaces	can	serve	as	scopes	for	the	deployment	of	services	so
that	one	user’s	frontend	service	doesn’t	interfere	with	another	user’s	frontend
service.	Namespaces	are	also	scopes	for	RBAC,	ensuring	that	one	developer
cannot	accidentally	delete	another	developer’s	work.	Thus,	in	a	shared	cluster	it
makes	sense	to	use	a	namespace	as	a	developer’s	workspace.	The	processes	for
onboarding	users	and	creating	and	securing	a	namespace	are	described	in	the
following	sections.

Onboarding	Users
Before	you	can	assign	a	user	to	a	namespace,	you	have	to	onboard	that	user	to
the	Kubernetes	cluster	itself.	To	achieve	this,	there	are	two	options.	You	can	use
certificate-based	authentication	to	create	a	new	certificate	for	the	user	and	give
them	a	kubeconfig	file	that	they	can	use	to	log	in,	or	you	can	configure	your
cluster	to	use	an	external	identity	system	(for	example,	Microsoft	Azure	Active
Directory	or	AWS	Identity	and	Access	Management	[IAM])	for	cluster	access.

In	general,	using	an	external	identity	system	is	a	best	practice	because	it	doesn’t
require	that	you	maintain	two	different	sources	of	identity,	but	in	some	cases	this
isn’t	possible	and	you	need	to	use	certificates.	Fortunately,	you	can	use	the
Kubernetes	certificate	API	for	creating	and	managing	such	certificates.	Here’s
the	process	for	adding	a	new	user	to	an	existing	cluster.

First,	you	need	to	generate	a	certificate	signing	request	to	generate	a	new
certificate.	Here	is	a	simple	Go	program	to	do	this:

package main

import (
 "crypto/rand"

 "crypto/rsa"
 "crypto/x509"
 "crypto/x509/pkix"
 "encoding/asn1"
 "encoding/pem"
 "os"
)

func main() {
 name := os.Args[1]
 user := os.Args[2]

 key, err := rsa.GenerateKey(rand.Reader, 1024)
 if err != nil {
 panic(err)
 }
 keyDer := x509.MarshalPKCS1PrivateKey(key)
 keyBlock := pem.Block{
 Type: "RSA PRIVATE KEY",
 Bytes: keyDer,
 }
 keyFile, err := os.Create(name + "-key.pem")
 if err != nil {
 panic(err)
 }
 pem.Encode(keyFile, &keyBlock)
 keyFile.Close()

 commonName := user
 // You may want to update these too
 emailAddress := "someone@myco.com"

 org := "My Co, Inc."
 orgUnit := "Widget Farmers"
 city := "Seattle"
 state := "WA"
 country := "US"

 subject := pkix.Name{
 CommonName: commonName,
 Country: []string{country},
 Locality: []string{city},
 Organization: []string{org},
 OrganizationalUnit: []string{orgUnit},
 Province: []string{state},
 }

 asn1, err := asn1.Marshal(subject.ToRDNSequence())
 if err != nil {

 panic(err)
 }
 csr := x509.CertificateRequest{
 RawSubject: asn1,
 EmailAddresses: []string{emailAddress},
 SignatureAlgorithm: x509.SHA256WithRSA,
 }

 bytes, err := x509.CreateCertificateRequest(rand.Reader, &csr, key)
 if err != nil {
 panic(err)
 }
 csrFile, err := os.Create(name + ".csr")
 if err != nil {
 panic(err)
 }

 pem.Encode(csrFile, &pem.Block{Type: "CERTIFICATE REQUEST", Bytes: bytes})
 csrFile.Close()
}

You	can	run	this	as	follows:

go run csr-gen.go client <user-name>

This	creates	files	called	client-key.pem	and	client.csr.	You	then	can	run	the
following	script	to	create	and	download	a	new	certificate:

#!/bin/bash

csr_name="my-client-csr"
name="${1:-my-user}"

csr="${2}"

cat <<EOF | kubectl create -f -
apiVersion: certificates.k8s.io/v1beta1
kind: CertificateSigningRequest
metadata:
 name: ${csr_name}
spec:
 groups:
 - system:authenticated
 request: $(cat ${csr} | base64 | tr -d '\n')
 usages:
 - digital signature

 - key encipherment
 - client auth
EOF

echo
echo "Approving signing request."
kubectl certificate approve ${csr_name}

echo
echo "Downloading certificate."
kubectl get csr ${csr_name} -o jsonpath='{.status.certificate}' \
 | base64 --decode > $(basename ${csr} .csr).crt

echo
echo "Cleaning up"
kubectl delete csr ${csr_name}

echo
echo "Add the following to the 'users' list in your kubeconfig file:"
echo "- name: ${name}"
echo " user:"
echo " client-certificate: ${PWD}/$(basename ${csr} .csr).crt"
echo " client-key: ${PWD}/$(basename ${csr} .csr)-key.pem"
echo
echo "Next you may want to add a role-binding for this user."

This	script	prints	out	the	final	information	that	you	can	add	to	a	kubeconfig	file
to	enable	that	user.	Of	course,	the	user	has	no	access	privileges,	so	you	will	need
to	apply	Kubernetes	RBAC	for	the	user	in	order	to	grant	them	privileges	to	a
namespace.

Creating	and	Securing	a	Namespace
The	first	step	in	provisioning	a	namespace	is	actually	just	creating	it.	You	can	do
this	using	kubectl create namespace my-namespace.

But	the	truth	is	that	when	you	create	a	namespace,	you	want	to	attach	a	bunch	of
metadata	to	that	namespace,	for	example,	the	contact	information	for	the	team
that	builds	the	component	deployed	into	the	namespace.	Generally,	this	is	in	the
form	of	annotations;	you	can	either	generate	the	YAML	file	using	some
templating,	such	as	Jinja	or	others,	or	you	can	create	and	then	annotate	the
namespace.	A	simple	script	to	do	this	looks	like:

ns='my-namespace'

https://oreil.ly/vvtTF

kubectl create namespace ${ns}
kubectl annotate namespace ${ns} annotation_key=annotation_value

When	the	namespace	is	created,	you	want	to	secure	it	by	ensuring	that	you	can
grant	access	to	the	namespace	to	a	specific	user.	To	do	this,	you	can	bind	a	role
to	a	user	in	the	context	of	that	namespace.	You	do	this	by	creating	a
RoleBinding	object	within	the	namespace	itself.	The	RoleBinding	might	look
like	this:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: example
 namespace: my-namespace
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: edit
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: myuser

To	create	it,	you	simply	run	kubectl create -f role-binding.yaml.	Note
that	you	can	reuse	this	binding	as	much	as	you	want	so	long	as	you	update	the
namespace	in	the	binding	to	point	to	the	correct	namespace.	If	you	ensure	that
the	user	doesn’t	have	any	other	role	bindings,	you	can	be	assured	that	this
namespace	is	the	only	part	of	the	cluster	to	which	the	user	has	access.	A
reasonable	practice	is	to	also	grant	reader	access	to	the	entire	cluster;	in	this	way
developers	can	see	what	others	are	doing	in	case	it	is	interfering	with	their	work.
Be	careful	in	granting	such	read	access,	however,	because	it	will	include	access
to	secret	resources	in	the	cluster.	Generally,	in	a	development	cluster	this	is	OK
because	everyone	is	in	the	same	organization	and	the	secrets	are	used	only	for
development;	however,	if	this	is	a	concern,	then	you	can	create	a	more	fine-
grained	role	that	eliminates	the	ability	to	read	secrets.

If	you	want	to	limit	the	amount	of	resources	consumed	by	a	particular
namespace,	you	can	use	the	ResourceQuota	resource	to	set	a	limit	to	the	total
number	of	resources	that	any	particular	namespace	consumes.	For	example,	the
following	quota	limits	the	namespace	to	10	cores	and	100	GB	of	memory	for

both	Request	and	Limit	for	the	pods	in	the	namespace:

apiVersion: v1
kind: ResourceQuota
metadata:
 name: limit-compute
 namespace: my-namespace
spec:
 hard:
 requests.cpu: "10"
 requests.memory: 100Gi
 limits.cpu: "10"
 limits.memory: 100Gi

Managing	Namespaces
Now	that	you	have	seen	how	to	onboard	a	new	user	and	how	to	create	a
namespace	to	use	as	a	workspace,	the	question	remains	how	to	assign	a
developer	to	the	namespace.	As	with	many	things,	there	is	no	single	perfect
answer;	rather,	there	are	two	approaches.	The	first	is	to	give	each	user	their	own
namespace	as	part	of	the	onboarding	process.	This	is	useful	because	after	a	user
is	onboarded,	they	always	have	a	dedicated	workspace	in	which	they	can
develop	and	manage	their	applications.	However,	making	the	developer’s
namespace	too	persistent	encourages	the	developer	to	leave	things	lying	around
in	the	namespace	after	they	are	done	with	them,	and	garbage-collecting	and
accounting	individual	resources	is	more	complicated.	An	alternate	approach	is	to
temporarily	create	and	assign	a	namespace	with	a	bounded	time	to	live	(TTL).
This	ensures	that	the	developer	thinks	of	the	resources	in	the	cluster	as	transient
and	that	it	is	easy	to	build	automation	around	the	deletion	of	entire	namespaces
when	their	TTL	has	expired.

In	this	model,	when	the	developer	wants	to	begin	a	new	project,	they	use	a	tool
to	allocate	a	new	namespace	for	the	project.	When	they	create	the	namespace,	it
has	a	selection	of	metadata	associated	with	the	namespace	for	management	and
accounting.	Obviously,	this	metadata	includes	the	TTL	for	the	namespace,	but	it
also	includes	the	developer	to	which	it	is	assigned,	the	resources	that	should	be
allocated	to	the	namespace	(e.g.,	CPU	and	memory),	and	the	team	and	purpose
of	the	namespace.	This	metadata	ensures	that	you	can	both	track	resource	usage
and	delete	the	namespace	at	the	right	time.

Developing	the	tooling	to	allocate	namespaces	on	demand	can	seem	like	a
challenge,	but	simple	tooling	is	relatively	simple	to	develop.	For	example,	you
can	achieve	the	allocation	of	a	new	namespace	with	a	simple	script	that	creates
the	namespace	and	prompts	for	the	relevant	metadata	to	attach	to	the	namespace.

If	you	want	to	get	more	integrated	with	Kubernetes,	you	can	use	custom	resource
definitions	(CRDs)	to	enable	users	to	dynamically	create	and	allocate	new
namespaces	using	the	kubectl	tool.	If	you	have	the	time	and	inclination,	this	is
definitely	a	good	practice	because	it	makes	namespace	management	declarative
and	also	enables	the	use	of	Kubernetes	RBAC.

After	you	have	tooling	to	enable	the	allocation	of	namespaces,	you	also	need	to
add	tooling	to	reap	namespaces	when	their	TTL	has	expired.	Again,	you	can
accomplish	this	with	a	simple	script	that	examines	the	namespaces	and	deletes
those	that	have	an	expired	TTL.

You	can	build	this	script	into	a	container	and	use	a	ScheduledJob	to	run	it	at	an
interval	like	once	per	hour.	Combined	together,	these	tools	can	ensure	that
developers	can	easily	allocate	independent	resources	for	their	project	as	needed,
but	those	resources	will	also	be	reaped	at	the	proper	interval	to	ensure	that	you
don’t	have	wasted	resources	and	that	old	resources	don’t	get	in	the	way	of	new
development.

Cluster-Level	Services
In	addition	to	tooling	to	allocate	and	manage	namespaces,	there	are	also	useful
cluster-level	services,	and	it’s	a	good	idea	to	enable	them	in	your	development
cluster.	The	first	is	log	aggregation	to	a	central	Logging	as	a	Service	(LaaS)
system.	One	of	the	easiest	things	for	a	developer	to	do	to	understand	the
operation	of	their	application	is	to	write	something	to	STDOUT.	Although	you
can	access	these	logs	via	kubectl logs,	that	log	is	limited	in	length	and	is	not
particularly	searchable.	If	you	instead	automatically	ship	those	logs	to	a	LaaS
system	such	as	a	cloud	service	or	an	Elasticsearch	cluster,	developers	can	easily
search	through	logs	for	relevant	information	as	well	as	aggregate	logging
information	across	multiple	containers	in	their	service.

Enabling	Developer	Workflows
Now	that	we	succesfully	have	a	shared	cluster	setup	and	we	can	onboard	new
application	developers	to	the	cluster	itself,	we	need	to	actually	get	them
developing	their	application.	Remember	that	one	of	the	key	KPIs	that	we	are
measuring	is	the	time	from	onboarding	to	an	initial	application	running	in	the
cluster.	It’s	clear	that	via	the	just-described	onboarding	scripts	we	can	quickly
authenticate	a	user	to	a	cluster	and	allocate	a	namespace,	but	what	about	getting
started	with	the	application?	Unfortunately,	even	though	there	are	a	few
techniques	that	help	with	this	process,	it	generally	requires	more	convention	than
automation	to	get	the	initial	application	up	and	running.	In	the	following
sections,	we	describe	one	approach	to	achieving	this;	it	is	by	no	means	the	only
approach	or	the	only	solution.	You	can	optionally	apply	the	approach	as	is	or	be
inspired	by	the	ideas	to	arrive	at	your	own	solution.

Initial	Setup
One	of	the	main	challenges	to	deploying	an	application	is	the	installation	of	all
of	the	dependencies.	In	many	cases,	especially	in	modern	microservice
architectures,	to	even	get	started	developing	on	one	of	the	microservices	requires
the	deployment	of	multiple	dependencies,	either	databases	or	other
microservices.	Although	the	deployment	of	the	application	itself	is	relatively
straightforward,	the	task	of	identifying	and	deploying	all	of	the	dependencies	to
build	the	complete	application	is	often	a	frustrating	case	of	trial	and	error
married	with	incomplete	or	out-of-date	instructions.

To	address	this	issue,	it	is	often	valuable	to	introduce	a	convention	for	describing
and	installing	dependencies.	This	can	be	seen	as	the	equivalent	of	something	like
npm install,	which	installs	all	of	the	required	JavaScript	dependencies.
Eventually,	there	is	likely	to	be	a	tool	similar	to	npm	that	provides	this	service	for
Kubernetes-based	applications,	but	until	then,	the	best	practice	is	to	rely	on
convention	within	your	team.

One	such	option	for	a	convention	is	the	creation	of	a	setup.sh	script	within	the
root	directory	of	all	project	repositories.	The	responsibility	of	this	script	is	to
create	all	dependencies	within	a	particular	namespace	to	ensure	that	all	of	the
application’s	dependencies	are	correctly	created.	For	example,	a	setup	script

might	look	like	the	following:

kubectl create my-service/database-stateful-set-yaml
kubectl create my-service/middle-tier.yaml
kubectl create my-service/configs.yaml

You	then	could	integrate	this	script	with	npm	by	adding	the	following	to	your
package.json:

{
 ...
 "scripts": {
 "setup": "./setup.sh",
 ...
 }
}

With	this	setup,	a	new	developer	can	simply	run	npm run setup	and	the	cluster
dependencies	will	be	installed.	Obviously,	this	particular	integration	is
Node.js/npm	specific.	In	other	programming	languages,	it	will	make	more	sense
to	integrate	with	the	language-specific	tooling.	For	example,	in	Java	you	might
integrate	with	a	Maven	pom.xml	file	instead.

Enabling	Active	Development
Having	set	up	the	developer	workspace	with	required	dependencies,	the	next
task	is	to	enable	them	to	iterate	on	their	application	quickly.	The	first
prerequisite	for	this	is	the	ability	to	build	and	push	a	container	image.	Let’s
assume	that	you	have	this	already	set	up;	if	not,	you	can	read	how	to	do	this	in	a
number	of	other	online	resources	and	books.

After	you	have	built	and	pushed	a	container	image,	the	task	is	to	roll	it	out	to	the
cluster.	Unlike	traditional	rollouts,	in	the	case	of	developer	iteration,	maintaining
availability	is	really	not	a	concern.	Thus,	the	easiest	way	to	deploy	new	code	is
to	simply	delete	the	Deployment	object	associated	with	the	previous	Deployment
and	then	create	a	new	Deployment	pointing	to	the	newly	built	image.	It	is	also
possible	to	update	an	existing	Deployment	in	place,	but	this	will	trigger	the
rollout	logic	in	the	Deployment	resource.	Although	it	is	possible	to	configure	a

Deployment	to	roll	out	code	quickly,	doing	so	introduces	a	difference	between
the	development	environment	and	the	production	environment	that	can	be
dangerous	or	destabilizing.	Imagine,	for	example,	that	you	accidentally	push	the
development	configuration	of	the	Deployment	into	production;	you	will
suddenly	and	accidentally	deploy	new	versions	to	production	without
appropriate	testing	and	delays	between	phases	of	the	rollout.	Because	of	this	risk
and	because	there	is	an	alternative,	the	best	practice	is	to	delete	and	re-create	the
Deployment.

Just	like	installing	dependencies,	it	is	also	a	good	practice	to	make	a	script	for
performing	this	deployment.	An	example	deploy.sh	script	might	look	like	the
following:

kubectl delete -f ./my-service/deployment.yaml
perl -pi -e 's/${old_version}/${new_version}/' ./my-service/deployment.yaml
kubectl create -f ./my-service/deployment.yaml

As	before,	you	can	integrate	this	with	existing	programming	language	tooling	so
that	(for	example)	a	developer	can	simply	run	npm run deploy	to	deploy	their
new	code	into	the	cluster.

Enabling	Testing	and	Debugging
After	a	user	has	successfully	deployed	their	development	version	of	their
application,	they	need	to	test	it	and,	if	there	are	problems,	debug	any	issues	with
the	application.	This	can	also	be	a	hurdle	when	developing	in	Kubernetes
because	it	is	not	always	clear	how	to	interact	with	your	cluster.	The	kubectl
command	line	is	a	veritable	Swiss	army	knife	of	tools	to	achieve	this,	from
kubectl logs	to	kubectl exec	and	kubectl port-forward,	but	learning	how
to	use	all	of	the	different	options	and	achieving	familiarity	with	the	tool	can	take
a	considerable	amount	of	experience.	Furthermore,	because	the	tool	runs	in	the
terminal,	it	often	requires	the	composition	of	multiple	windows	to
simultaneously	examine	both	the	source	code	for	the	application	and	the	running
application	itself.

To	streamline	the	testing	and	debugging	experience,	Kubernetes	tooling	is
increasingly	being	integrated	into	development	environments,	for	example,	the

open	source	extension	for	Visual	Studio	(VS)	Code	for	Kubernetes.	The
extension	is	easily	installed	for	free	from	the	VS	Code	marketplace.	When
installed,	it	automatically	discovers	any	clusters	that	you	already	have	in	your
kubeconfig	file,	and	it	provides	a	tree-view	navigation	pane	for	you	to	see	the
contents	of	your	cluster	at	a	glance.

In	addition	to	being	able	to	see	your	cluster	state	at	a	glance,	the	integration
allows	a	developer	to	use	the	tools	available	via	kubectl	in	an	intuitive,
discoverable	way.	From	the	tree	view,	if	you	right-click	a	Kubernetes	pod,	you
can	immediately	use	port	forwarding	to	bring	a	network	connection	to	the	pod
directly	to	the	local	machine.	Likewise,	you	can	access	the	logs	for	the	pod	or
even	get	a	terminal	within	the	running	container.

The	integration	of	these	commands	with	prototypical	user	interface	expectations
(e.g.,	right-click	shows	a	context	menu),	as	well	as	the	integration	of	these
experiences	alongside	the	code	for	the	application	itself,	enable	developers	with
minimal	Kubernetes	experience	to	rapidly	become	productive	in	the
development	cluster.

Of	course	this	VS	Code	extension	isn’t	the	only	integration	between	Kubernetes
and	a	devlopment	environment;	there	are	several	others	that	you	can	install
depending	on	your	choice	of	programming	environment	and	style	(vi,	emacs,
etc.).

Setting	Up	a	Development	Environment	Best
Practices
Setting	up	successful	workflows	on	Kubernetes	is	key	to	productivity	and
happiness.	Following	these	best	practices	will	help	to	ensure	that	developers	are
up	and	running	quickly:

Think	about	developer	experience	in	three	phases:	onboarding,
developing,	and	testing.	Make	sure	that	the	development	environment
you	build	supports	all	three	of	these	phases.

When	building	a	development	cluster,	you	can	choose	between	one
large	cluster	and	a	cluster	per	developer.	There	are	pros	and	cons	to

each,	but	generally	a	single	large	cluster	is	a	better	approach.

When	you	add	users	to	a	cluster,	add	them	with	their	own	identity	and
access	to	their	own	namespace.	Use	resource	limits	to	restrict	how	much
of	the	cluster	they	can	use.

When	managing	namespaces,	think	about	how	you	can	reap	old,	unused
resources.	Developers	will	have	bad	hygiene	about	deleting	unused
things.	Use	automation	to	clean	it	up	for	them.

Think	about	cluster-level	services	like	logs	and	monitoring	that	you	can
set	up	for	all	users.	Sometimes,	cluster-level	dependencies	like
databases	are	also	useful	to	set	up	on	behalf	of	all	users	using	templates
like	Helm	charts.

Summary
We’ve	reached	a	place	where	creating	a	Kubernetes	cluster,	especially	in	the
cloud,	is	a	relatively	straightforward	exercise,	but	enabling	developers	to
productively	use	such	a	cluster	is	significantly	less	obvious	and	easy.	When
thinking	about	enabling	developers	to	successfully	build	applications	on
Kubernetes,	it’s	important	to	think	about	the	key	goals	around	onboarding,
iterating,	testing,	and	debugging	applications.	Likewise,	it	pays	to	invest	in	some
basic	tooling	specific	to	user	onboarding,	namespace	provisioning,	and	cluster
services	like	basic	log	aggregation.	Viewing	a	development	cluster	and	your
code	repositories	as	an	opportunity	to	standardize	and	apply	best	practices	will
ensure	that	you	have	happy	and	productive	developers,	successfully	building
code	to	deploy	to	your	production	Kubernetes	clusters.

Chapter	3.	Monitoring	and
Logging	in	Kubernetes

In	this	chapter,	we	discuss	best	practices	for	monitoring	and	logging	in
Kubernetes.	We’ll	dive	into	the	details	of	different	monitoring	patterns,
important	metrics	to	collect,	and	building	dashboards	from	these	raw	metrics.
We	then	wrap	up	with	examples	of	implementing	monitoring	for	your
Kubernetes	cluster.

Metrics	Versus	Logs
You	first	need	to	understand	the	difference	between	log	collection	and	metrics
collection.	They	are	complementary	to	each	other	but	serve	different	purposes.

Metrics

A	series	of	numbers	measured	over	a	period	of	time

Logs

Used	for	exploratory	analysis	of	a	system

An	example	of	where	you	would	need	to	use	both	metrics	and	logging	is	when
an	application	is	performing	poorly.	Our	first	indication	of	the	issue	might	be	an
alert	of	high	latency	on	the	pods	hosting	the	application,	but	the	metrics	might
not	give	a	good	indication	of	the	issue.	We	then	can	look	into	our	logs	to	perform
an	investigation	of	errors	that	are	being	emitted	from	the	application.

Monitoring	Techniques
Black-box	monitoring	focuses	on	monitoring	from	the	outside	of	an	application
and	is	what’s	been	used	traditionally	when	monitoring	systems	for	components
like	CPU,	memory,	storage,	and	so	on.	Black-box	monitoring	can	still	be	useful
for	monitoring	at	the	infrastructure	level,	but	it	lacks	insights	and	context	into

how	the	application	is	operating.	For	example,	to	test	whether	a	cluster	is
healthy,	we	might	schedule	a	pod,	and	if	it’s	successful,	we	know	that	the
scheduler	and	service	discovery	are	healthy	within	our	cluster,	so	we	can	assume
the	cluster	components	are	healthy.

White-box	monitoring	focuses	on	the	details	in	the	context	of	the	application
state,	such	as	total	HTTP	requests,	number	of	500	errors,	latency	of	requests,	and
so	on.	With	white-box	monitoring,	we	can	begin	to	understand	the	“Why”	of	our
system	state.	It	allows	us	to	ask,	“Why	did	the	disk	fill	up?”	and	not	just,	“The
disk	filled	up.”

Monitoring	Patterns
You	might	look	at	monitoring	and	say,	“How	difficult	can	this	be?	We’ve	always
monitored	our	systems.”	Yes,	some	of	your	typical	monitoring	patterns	in	place
today	also	fit	into	how	you	monitor	Kubernetes.	The	difference	is	that	platforms
like	Kubernetes	are	much	more	dynamic	and	transient,	and	you’ll	need	to	change
your	thinking	about	how	to	monitor	these	environments.	For	example,	when
monitoring	a	virtual	machine	(VM)	you	expect	that	VM	to	be	up	24/7	and	all	its
state	preserved.	In	Kubernetes,	pods	can	be	very	dynamic	and	short-lived,	so	you
need	to	have	monitoring	in	place	that	can	handle	this	dynamic	and	transient
nature.

There	are	a	couple	of	different	monitoring	patterns	to	focus	on	when	monitoring
distributed	systems.

The	USE	method,	popularized	by	Brendan	Gregg,	focuses	on	the	following:

U—Utilization

S—Saturation

E—Errors

This	method	is	focused	on	infrastructure	monitoring	because	there	are
limitations	on	using	it	for	application-level	monitoring.	The	USE	method	is
described	as,	“For	every	resource,	check	utilization,	saturation,	and	error	rates.”
This	method	lets	you	quickly	identify	resource	constraints	and	error	rates	of	your
systems.	For	example,	to	check	the	health	of	the	network	for	your	nodes	in	the

cluster,	you	will	want	to	monitor	the	utilization,	saturation,	and	error	rate	to	be
able	to	easily	identify	any	network	bottlenecks	or	errors	in	the	network	stack.
The	USE	method	is	a	tool	in	a	larger	toolbox	and	is	not	the	only	method	you	will
utilize	to	monitor	your	systems.

Another	monitoring	approach,	called	the	RED	method,	was	popularized	by	Tom
Willke.	The	RED	method	approach	is	focused	on	the	following:

R—Rate

E—Errors

D—Duration

The	philosophy	was	taken	from	Google’s	Four	Golden	Signals:

Latency	(how	long	it	takes	to	serve	a	request)

Traffic	(how	much	demand	is	placed	on	your	system)

Errors	(rate	of	requests	that	are	failing)

Saturation	(how	utilized	your	service	is)

As	an	example,	you	could	use	this	method	to	monitor	a	frontend	service	running
in	Kubernetes	to	calculate	the	following:

How	many	requests	is	my	frontend	service	processing?

How	many	500	errors	are	users	of	the	service	receiving?

Is	the	service	overutilized	by	requests?

As	you	can	see	from	the	previous	example,	this	method	is	more	focused	on	the
experience	of	the	users	and	their	experience	with	the	service.

The	USE	and	RED	methods	are	complementary	to	each	other	given	that	the	USE
method	focuses	on	the	infrastructure	components	and	the	RED	method	focuses
on	monitoring	the	end-user	experience	for	the	application.

Kubernetes	Metrics	Overview

Now	that	we	know	the	different	monitoring	techniques	and	patterns,	let’s	look	at
what	components	you	should	be	monitoring	in	your	Kubernetes	cluster.	A
Kubernetes	cluster	consists	of	control-plane	components	and	worker-node
components.	The	control-plane	components	consist	of	the	API	Server,	etcd,
scheduler,	and	controller	manager.	The	worker	nodes	consist	of	the	kubelet,
container	runtime,	kube-proxy,	kube-dns,	and	pods.	You	need	to	monitor	all
these	components	to	ensure	a	healthy	cluster	and	application.

Kubernetes	exposes	these	metrics	in	a	variety	of	ways,	so	let’s	take	a	look	at
different	components	that	you	can	use	to	collect	metrics	within	your	cluster.

cAdvisor
Container	Advisor,	or	cAdvisor,	is	an	open	source	project	that	collects	resources
and	metrics	for	containers	running	on	a	node.	cAdvisor	is	built	into	the
Kubernetes	kubelet,	which	runs	on	every	node	in	the	cluster.	It	collects	memory
and	CPU	metrics	through	the	Linux	control	group	(cgroup)	tree.	If	you	are	not
familiar	with	cgroups,	it’s	a	Linux	kernel	feature	that	allows	isolation	of
resources	for	CPU,	disk	I/O,	or	network	I/O.	cAdvisor	will	also	collect	disk
metrics	through	statfs,	which	is	built	into	the	Linux	kernel.	These	are
implementation	details	you	don’t	really	need	to	worry	about,	but	you	should
understand	how	these	metrics	are	exposed	and	the	type	of	information	you	can
collect.	You	should	consider	cAdvisor	as	the	source	of	truth	for	all	container
metrics.

Metrics	Server
The	Kubernetes	metrics	server	and	Metrics	Server	API	are	a	replacement	for	the
deprecated	Heapster.	Heapster	had	some	architectural	disadvantages	with	how	it
implemented	the	data	sink,	which	caused	a	lot	of	vendored	solutions	in	the	core
Heapster	code	base.	This	issue	was	solved	by	implementing	a	resource	and
Custom	Metrics	API	as	an	aggregated	API	in	Kubernetes.	This	allows
implementations	to	be	switched	out	without	changing	the	API.

There	are	two	aspects	to	understand	in	the	Metrics	Server	API	and	metrics
server.

First,	the	canonical	implementation	of	the	Resource	Metrics	API	is	the	metrics

server.	The	metrics	server	gathers	resource	metrics	such	as	CPU	and	memory.	It
gathers	these	metrics	from	the	kubelet’s	API	and	then	stores	them	in	memory.
Kubernetes	uses	these	resource	metrics	in	the	scheduler,	Horizontal	Pod
Autoscaler	(HPA),	and	Vertical	Pod	Autoscaler	(VPA).

Second,	the	Custom	Metrics	API	allows	monitoring	systems	to	collect	arbitrary
metrics.	This	allows	monitoring	solutions	to	build	custom	adapters	that	will
allow	for	extending	outside	the	core	resource	metrics.	For	example,	Prometheus
built	one	of	the	first	custom	metrics	adapters,	which	allows	you	to	use	the	HPA
based	on	a	custom	metric.	This	opens	up	better	scaling	based	on	your	use	case
because	now	you	can	bring	in	metrics	like	queue	size	and	scale	based	on	a
metric	that	might	be	external	to	Kubernetes.

Now	that	there	is	a	standardized	Metrics	API,	this	opens	up	many	possibilities	to
scale	outside	the	plain	old	CPU	and	memory	metrics.

kube-state-metrics
kube-state-metrics	is	a	Kubernetes	add-on	that	monitors	the	object	stored	in
Kubernetes.	Where	cAdvisor	and	metrics	server	are	used	to	provide	detailed
metrics	on	resource	usage,	kube-state-metrics	is	focused	on	identifying
conditions	on	Kubernetes	objects	deployed	to	your	cluster.

Following	are	some	questions	that	kube-state-metrics	can	answer	for	you:

Pods

How	many	pods	are	deployed	to	the	cluster?

How	many	pods	are	in	a	pending	state?

Are	there	enough	resources	to	serve	a	pods	request?

Deployments

How	many	pods	are	in	a	running	state	versus	a	desired	state?

How	many	replicas	are	available?

What	deployments	have	been	updated?

Nodes

What’s	the	status	of	my	worker	nodes?

What	are	the	allottable	CPU	cores	in	my	cluster?

Are	there	any	nodes	that	are	unschedulable?

Jobs

When	did	a	job	start?

When	did	a	job	complete?

How	many	jobs	failed?

As	of	this	writing,	there	are	22	object	types	that	kube-state-metrics	tracks.	These
are	always	expanding,	and	you	can	find	the	documentation	in	the	Github
repository.

What	Metrics	Do	I	Monitor?
The	easy	answer	is	“Everything,”	but	if	you	try	to	monitor	too	much,	you	can
create	too	much	noise	that	filters	out	the	real	signals	into	which	you	need	to	have
insight.	When	we	think	about	monitoring	in	Kubernetes,	we	want	to	take	a
layered	approach	that	takes	into	account	the	following:

Physical	or	virtual	nodes

Cluster	components

Cluster	add-ons

End-user	applications

Using	this	layered	approach	to	monitoring	allows	you	to	more	easily	identify	the
correct	signals	in	your	monitoring	system.	It	allows	you	to	approach	issues	with
a	more	targeted	approach.	For	example,	if	you	have	pods	going	into	a	pending
state,	you	can	start	with	resource	utilization	of	the	nodes,	and	if	all	is	OK,	you
can	target	cluster-level	components.

Following	are	metrics	you	would	want	to	target	in	your	system:

Nodes

https://oreil.ly/bdTp2

CPU	utilization

Memory	utilization

Network	utilization

Disk	utilization

Cluster	components

etcd	latency

Cluster	add-ons

Cluster	Autoscaler

Ingress	controller

Application

Container	memory	utilization	and	saturation

Container	CPU	utilization

Container	network	utilization	and	error	rate

Application	framework-specific	metrics

Monitoring	Tools
There	are	many	monitoring	tools	that	can	integrate	with	Kubernetes,	and	more
arriving	every	day,	building	on	their	feature	set	to	have	better	integration	with
Kubernetes.	Following	are	a	few	popular	tools	that	integrate	with	Kubernetes:

Prometheus

Prometheus	is	an	open	source	systems	monitoring	and	alerting	toolkit
originally	built	at	SoundCloud.	Since	its	inception	in	2012,	many	companies
and	organizations	have	adopted	Prometheus,	and	the	project	has	a	very	active
developer	and	user	community.	It	is	now	a	standalone	open	source	project
and	maintained	independent	of	any	company.	To	emphasize	this,	and	to
clarify	the	project’s	governance	structure,	Prometheus	joined	the	Cloud

Native	Computing	Foundation	(CNCF)	in	2016	as	the	second	hosted	project,
after	Kubernetes.

InfluxDB

InfluxDB	is	a	time-series	database	designed	to	handle	high	write	and	query
loads.	It	is	an	integral	component	of	the	TICK	(Telegraf,	InfluxDB,
Chronograf,	and	Kapacitor)	stack.	InfluxDB	is	meant	to	be	used	as	a	backing
store	for	any	use	case	involving	large	amounts	of	timestamped	data,
including	DevOps	monitoring,	application	metrics,	IoT	sensor	data,	and	real-
time	analytics.

Datadog

Datadog	provides	a	monitoring	service	for	cloud-scale	applications,
providing	monitoring	of	servers,	databases,	tools,	and	services	through	a
SaaS-based	data	analytics	platform.

Sysdig

Sysdig	Monitor	is	a	commercial	tool	that	provides	Docker	monitoring	and
Kubernetes	monitoring	for	container-native	apps.	Sysdig	also	allows	you	to
collect,	correlate,	and	query	Prometheus	metrics	with	direct	Kubernetes
integration.

Cloud	provider	tools

GCP	Stackdriver

Stackdriver	Kubernetes	Engine	Monitoring	is	designed	to	monitor
Google	Kubernetes	Engine	(GKE)	clusters.	It	manages	monitoring	and
logging	services	together	and	features	an	interface	that	provides	a
dashboard	customized	for	GKE	clusters.	Stackdriver	Monitoring
provides	visibility	into	the	performance,	uptime,	and	overall	health	of
cloud-powered	applications.	It	collects	metrics,	events,	and	metadata
from	Google	Cloud	Platform	(GCP),	Amazon	Web	Services	(AWS),
hosted	uptime	probes,	and	application	instrumentation.

Microsoft	Azure	Monitor	for	containers

Azure	Monitor	for	containers	is	a	feature	designed	to	monitor	the

performance	of	container	workloads	deployed	to	either	Azure	Container
Instances	or	managed	Kubernetes	clusters	hosted	on	Azure	Kubernetes
Service.	Monitoring	your	containers	is	critical,	especially	when	you’re
running	a	production	cluster,	at	scale,	with	multiple	applications.	Azure
Monitor	for	containers	gives	you	performance	visibility	by	collecting
memory	and	processor	metrics	from	controllers,	nodes,	and	containers
that	are	available	in	Kubernetes	through	the	Metrics	API.	Container	logs
are	also	collected.	After	you	enable	monitoring	from	Kubernetes	clusters,
metrics	and	logs	are	automatically	collected	for	you	through	a
containerized	version	of	the	Log	Analytics	agent	for	Linux.

AWS	Container	Insights

If	you	use	Amazon	Elastic	Container	Service	(ECS),	Amazon	Elastic
Kubernetes	Service,	or	other	Kubernetes	platforms	on	Amazon	EC2,	you
can	use	CloudWatch	Container	Insights	to	collect,	aggregate,	and
summarize	metrics	and	logs	from	your	containerized	applications	and
microservices.	The	metrics	include	utilization	for	resources	such	as	CPU,
memory,	disk,	and	network.	Container	Insights	also	provides	diagnostic
information,	such	as	container	restart	failures,	to	help	you	isolate	issues
and	resolve	them	quickly.

One	important	aspect	when	looking	at	implementing	a	tool	to	monitor	metrics	is
to	look	at	how	the	metrics	are	stored.	Tools	that	provide	a	time-series	database
with	key/value	pairs	will	give	you	a	higher	degree	of	attributes	for	the	metric.

TIP
Always	evaluate	monitoring	tools	you	already	have,	because	taking	on	a	new	monitoring	tool
has	a	learning	curve	and	a	cost	due	to	the	operational	implementation	of	the	tool.	Many	of	the
monitoring	tools	now	have	integration	into	Kubernetes,	so	evaluate	which	ones	you	have	today
and	whether	they	will	meet	your	requirements.

Monitoring	Kubernetes	Using	Prometheus
In	this	section	we	focus	on	monitoring	metrics	with	Prometheus,	which	provides
good	integrations	with	Kubernetes	labeling,	service	discovery,	and	metadata.

The	high-level	concepts	we	implement	throughout	the	chapter	will	also	apply	to
other	monitoring	systems.

Prometheus	is	an	open	source	project	that	is	hosted	by	the	CNCF.	It	was
originally	developed	at	SoundCloud,	and	a	lot	of	its	concepts	are	based	on
Google’s	internal	monitoring	system,	BorgMon.	It	implements	a
multidimensional	data	model	with	keypairs	that	work	much	like	how	the
Kubernetes	labeling	system	works.	Prometheus	exposes	metrics	in	a	human-
readable	format,	as	in	the	following	example:

HELP node_cpu_seconds_total Seconds the CPU is spent in each mode.
TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="0",mode="idle"} 5144.64
node_cpu_seconds_total{cpu="0",mode="iowait"} 117.98

To	collect	metrics,	Prometheus	uses	a	pull	model	in	which	it	scrapes	a	metrics
endpoint	to	collect	and	ingest	the	metrics	into	the	Prometheus	server.	Systems
like	Kubernetes	already	expose	their	metrics	in	a	Prometheus	format,	making	it
simple	to	collect	metrics.	Many	other	Kubernetes	ecosystem	projects	(NGINX,
Traefik,	Istio,	LinkerD,	etc.)	also	expose	their	metrics	in	a	Prometheus	format.
Prometheus	also	can	use	exporters,	which	allow	you	to	take	emitted	metrics
from	your	service	and	translate	them	to	Prometheus-formatted	metrics.

Prometheus	has	a	very	simplified	architecure,	as	depicted	in	Figure	3-1.

Figure	3-1.	Prometheus	architecture

TIP
You	can	install	Prometheus	within	the	cluster	or	outside	the	cluster.	It’s	a	good	practice	to
monitor	your	cluster	from	a	“utility	cluster”	to	avoid	a	production	issue	also	affecting	your
monitoring	system.	There	are	tools	like	Thanos	that	provide	high	availability	for	Prometheus
and	allow	you	to	export	metrics	into	an	external	storage	system.

A	deep	dive	into	the	Prometheus	architecture	is	beyond	the	scope	of	this	book,
and	you	should	refer	to	another	one	of	the	dedicated	books	on	this	topic.
Prometheus:	Up	&	Running	(O’Reilly)	is	a	good	in-depth	book	to	get	you
started.

So,	let’s	dive	in	and	get	Prometheus	set	up	on	our	Kubernetes	cluster.	There	are
many	different	ways	to	do	this,	and	the	deployment	will	depend	on	your	specific
implementation.	In	this	chapter	we	install	the	Prometheus	Operator:

Prometheus	Server

Pulls	and	stores	metrics	being	collected	from	systems.

Prometheus	Operator

Makes	the	Prometheus	configuration	Kubernetes	native,	and	manages	and

https://oreil.ly/7e6Wf
https://oreil.ly/NewNE

operates	Prometheus	and	Alertmanager	clusters.	Allows	you	to	create,
destroy,	and	configure	Prometheus	resources	through	native	Kubernetes
resource	definitions.

Node	Exporter

Exports	host	metrics	from	Kubernetes	nodes	in	the	cluster.

kube-state-metrics

Collects	Kubernetes-specific	metrics.

Alertmanager

Allows	you	to	configure	and	forward	alerts	to	external	systems.

Grafana

Provides	visualization	on	dashboard	capabilities	for	Prometheus.

helm install --name prom stable/prometheus-operator

After	you’ve	installed	the	Operator,	you	should	see	the	following	pods	deployed
to	your	cluster:

$ kubectl get pods -n monitoring
NAME READY STATUS RESTARTS AGE
alertmanager-main-0 2/2 Running 0 5h39m
alertmanager-main-1 2/2 Running 0 5h39m
alertmanager-main-2 2/2 Running 0 5h38m
grafana-5d8f767-ct2ws 1/1 Running 0 5h39m
kube-state-metrics-7fb8b47448-k6j6g 4/4 Running 0 5h39m
node-exporter-5zk6k 2/2 Running 0 5h39m
node-exporter-874ss 2/2 Running 0 5h39m
node-exporter-9mtgd 2/2 Running 0 5h39m
node-exporter-w6xwt 2/2 Running 0 5h39m
prometheus-adapter-66fc7797fd-ddgk5 1/1 Running 0 5h39m
prometheus-k8s-0 3/3 Running 1 5h39m
prometheus-k8s-1 3/3 Running 1 5h39m
prometheus-operator-7cb68545c6-gm84j 1/1 Running 0 5h39m

Lets	take	a	look	at	the	Prometheus	Server	to	see	how	you	can	run	some	queries
to	retrieve	Kubernetes	metrics:

kubectl port-forward svc/prom-prometheus-operator-prometheus 9090

This	creates	a	tunnel	to	our	localhost	on	port	9090.	Now,	we	can	open	a	web
browser	and	connect	to	the	Prometheus	server	on	http://127.0.0.1:9090.

Figure	3-2	depicts	the	screen	you’ll	see	if	you	successfully	deployed	Prometheus
to	your	cluster.

Now	that	we	have	Prometheus	deployed,	let’s	explore	some	Kubernetes	metrics
through	the	Prometheus	PromQL	query	language.	There	is	a	PromQL	Basics
guide	available.

We	talked	earlier	in	the	chapter	about	employing	the	USE	method,	so	let’s	gather
some	node	metrics	on	CPU	utilization	and	saturation.

Figure	3-2.	The	Prometheus	dashboard

In	the	Expression	input,	enter	the	following	query:

avg(rate(node_cpu_seconds_total[5m]))

This	will	return	the	average	CPU	utilization	for	the	entire	cluster.

If	we	want	to	get	the	CPU	utilization	per	node,	we	can	write	a	query	like	the
following:

http://127.0.0.1:9090
https://oreil.ly/nGZYt

avg(rate(node_cpu_seconds_total[5m])) by (node_name)

This	returns	average	CPU	utilization	for	each	node	in	the	cluster.

So,	now	that	you	have	some	experience	with	running	queries	within	Prometheus,
let’s	take	a	look	at	how	Grafana	can	help	build	dashboard	visualization	for	these
common	USE	method	metrics	we	want	to	track.	The	great	thing	about	the
Prometheus	Operator	you	installed	is	that	it	comes	with	some	prebuilt	Grafana
dashboards	that	you	can	use.

You’ll	now	need	to	create	a	port-forward	tunnel	to	the	Grafana	pod	so	that	you
can	access	it	from	your	local	machine:

kubectl port-forward svc/prom-grafana 3000:3000

Now,	point	your	web	browser	at	http://localhost:3000	and	log	in	using	the
following	credentials:

Username:	admin

Password:	admin

Under	the	Grafana	dashboard	you’ll	find	a	dashboard	called	Kubernetes	/	USE
Method	/	Cluster.	This	dashboard	gives	you	a	good	overview	of	the	utilization
and	saturation	of	the	Kubernetes	cluster,	which	is	at	the	heart	of	the	USE
method.	Figure	3-3	presents	an	example	of	the	dashboard.

Figure	3-3.	A	Grafana	dashboard

Go	ahead	and	take	some	time	to	explore	the	different	dashboards	and	metrics
that	you	can	visualize	in	Grafana.

http://localhost:3000

TIP
Avoid	creating	too	many	dashboards	(aka	“The	Wall	of	Graphs”)	because	this	can	be	difficult
for	engineers	to	reason	with	in	troubleshooting	situations.	You	might	think	having	more
information	in	a	dashboard	means	better	monitoring,	but	the	majority	of	the	time	it	causes
more	confusion	for	a	user	looking	at	the	dashboard.	Focus	your	dashboard	design	on	outcomes
and	time	to	resolution.

Logging	Overview
Up	to	this	point,	we	have	discussed	a	lot	about	metrics	and	Kubernetes,	but	to
get	the	full	picture	of	your	environment,	you	also	need	to	collect	and	centralize
logs	from	the	Kubernetes	cluster	and	the	applications	deployed	to	your	cluster.

With	logging,	it	might	be	easy	to	say,	“Let’s	just	log	everything,”	but	this	can
cause	two	issues:

There	is	too	much	noise	to	find	issues	quickly.

Logs	can	consume	a	lot	of	resources	and	come	with	a	high	cost.

There	is	no	clear-cut	answer	to	what	exactly	you	should	log	because	debug	logs
become	a	necessary	evil.	Over	time	you’ll	start	to	understand	your	environment
better	and	learn	what	noise	you	can	tune	out	from	the	logging	system.	Also,	to
address	the	ever-increasing	amount	of	logs	stored,	you	will	need	to	implement	a
retention	and	archival	policy.	From	an	end-user	experience,	having	somewhere
between	30	and	45	days	worth	of	historical	logs	is	a	good	fit.	This	allows	for
investigation	of	problems	that	manifest	over	a	longer	period	of	time,	but	also
reduces	the	amount	of	resources	needed	to	store	logs.	If	you	require	longer-term
storage	for	compliance	reasons,	you’ll	want	to	archive	the	logs	to	more	cost-
effective	resources.

In	a	Kubernetes	cluster,	there	are	multiple	components	to	log.	Following	is	a	list
of	components	from	which	you	should	be	collecting	metrics:

Node	logs

Kubernetes	control-plane	logs

API	server

Controller	manager

Scheduler

Kubernetes	audit	logs

Application	container	logs

With	node	logs,	you	want	to	collect	events	that	happen	to	essential	node
services.	For	example,	you	will	want	to	collect	logs	from	the	Docker	daemon
running	on	the	worker	nodes.	A	healthy	Docker	daemon	is	essential	for	running
containers	on	the	worker	node.	Collecting	these	logs	will	help	you	diagnose	any
issues	that	you	might	run	into	with	the	Docker	daemon,	and	it	will	give	you
information	into	any	underlying	issues	with	the	daemon.	There	are	also	other
essential	services	that	you	will	want	to	log	from	the	underlying	node.

The	Kubernetes	control	plane	consists	of	several	components	from	which	you’ll
need	to	collect	logs	to	give	you	more	insight	into	underlying	issues	within	it.	The
Kubernetes	control	plane	is	core	to	a	healthy	cluster,	and	you’ll	want	to
aggregate	the	logs	that	it	stores	on	the	host	in	/var/log/kube-APIserver.log,
/var/log/kube-scheduler.log,	and	/var/log/kube-controller-manager.log.	The
controller	manager	is	responsible	for	creating	objects	defined	by	the	end	user.	As
an	example,	as	a	user	you	create	a	Kubernetes	service	with	type	LoadBalancer
and	it	just	sits	in	a	pending	state;	the	Kubernetes	events	might	not	give	all	the
details	to	diagnose	the	issue.	If	you	collect	the	logs	in	a	centralized	system,	it
will	give	you	more	detail	into	the	underlying	issue	and	a	quicker	way	to
investigate	the	issue.

You	can	think	of	Kubernetes	audit	logs	as	security	monitoring	because	they	give
you	insight	into	who	did	what	within	the	system.	These	logs	can	be	very	noisy,
so	you’ll	want	to	tune	them	for	your	environment.	In	many	instances	these	logs
can	cause	a	huge	spike	in	your	logging	system	when	first	initialized,	so	make
sure	that	you	follow	the	Kubernetes	documentation	guidance	on	audit	log
monitoring.

Application	container	logs	give	you	insight	into	the	actual	logs	your	application
is	emitting.	You	can	forward	these	logs	to	a	central	repository	in	multiple	ways.
The	first	and	recommended	way	is	to	send	all	application	logs	to	STDOUT
because	this	gives	you	a	uniform	way	of	application	logging,	and	a	monitoring

daemon	set	can	gather	the	logs	directly	from	the	Docker	daemon.	The	other	way
is	to	use	a	sidecar	pattern	and	run	a	log	forwarding	container	next	to	the
application	container	in	a	Kubernetes	pod.	You	might	need	to	use	this	pattern	if
your	application	logs	to	the	filesystem.

NOTE
There	are	many	options	and	configurations	for	managing	Kubernetes	audit	logs.	These	audit
logs	can	be	very	noisy	and	it	can	be	expensive	to	log	all	actions.	You	should	consider	looking
at	the	audit	logging	documentation,	so	that	you	can	fine-tune	these	logs	for	your	environment.

Tools	for	Logging
Like	collecting	metrics	there	are	numerous	tools	to	collect	logs	from	Kubernetes
and	applications	running	in	the	cluster.	You	might	already	have	tooling	for	this,
but	be	aware	of	how	the	tool	implements	logging.	The	tool	should	have	the
capability	to	run	as	a	Kubernetes	DaemonSet	and	also	have	a	solution	to	run	as	a
sidecar	for	applications	that	don’t	send	logs	to	STDOUT.	Utilizing	an	existing
tool	can	be	advantageous	because	you	will	already	have	a	lot	of	operational
knowledge	of	the	tool.

Some	of	the	more	popular	tools	with	Kubernetes	integration	are:

Elastic	Stack

Datadog

Sumo	Logic

Sysdig

Cloud	provider	services	(GCP	Stackdriver,	Azure	Monitor	for
containers,	and	Amazon	CloudWatch)

When	looking	for	a	tool	to	centralize	logs,	hosted	solutions	can	provide	a	lot	of
value	because	they	offload	a	lot	of	the	operational	cost.	Hosting	your	own
logging	solution	seems	great	on	day	N,	but	as	the	environment	grows,	it	can	be
very	time	consuming	to	maintain	the	solution.

https://oreil.ly/L84dM

Logging	by	Using	an	EFK	Stack
For	the	purposes	of	this	book,	we	use	an	Elasticsearch,	Fluentd,	and	Kibana
(EFK)	stack	to	set	up	monitoring	for	our	cluster.	Implementing	an	EFK	stack	can
be	a	good	way	to	get	started,	but	at	some	point	you’ll	probably	ask	yourself,	“Is
it	really	worth	managing	my	own	logging	platform?”	Typically	it’s	not	worth	the
effort	because	self-hosted	logging	solutions	are	great	on	day	one,	but	they
become	overly	complex	by	day	365.	Self-hosted	logging	solutions	become	more
operationally	complex	as	your	environment	scales.	There	is	no	one	correct
answer,	so	evaluate	whether	your	business	requirements	need	you	to	host	your
own	solution.	There	are	also	a	number	of	hosted	solutions	based	on	the	EFK
stack,	so	you	can	always	move	pretty	easily	if	you	choose	not	to	host	it	yourself.

You	will	deploy	the	following	for	your	monitoring	stack:

Elasticsearch	Operator

Fluentd	(forwards	logs	from	our	Kubernetes	environment	into
Elasticsearch)

Kibana	(visualization	tool	to	search,	view,	and	interact	with	logs	stored
in	Elasticsearch)

Deploy	the	manifest	to	your	Kubernetes	cluster:

kubectl create namespace logging

kubectl apply -f
https://raw.githubusercontent.com/dstrebel/kbp/master/elasticsearch-operator.yaml -n
logging

Deploy	the	Elasticsearch	operator	to	aggregate	all	forwarded	logs:

kubectl apply -f https://raw.githubusercontent.com/dstrebel/kbp/master/efk.yaml -n
logging

This	deploys	Fluentd	and	Kibana,	which	will	allow	us	to	forward	logs	to
Elasticsearch	and	visualize	the	logs	using	Kibana.

You	should	see	the	following	pods	deployed	to	your	cluster:

kubectl get pods -n logging

efk-kibana-854786485-knhl5 1/1 Running 0 4m
elasticsearch-operator-5647dc6cb-tc2st 1/1 Running 0 5m
elasticsearch-operator-sysctl-ktvk9 1/1 Running 0 5m
elasticsearch-operator-sysctl-lf2zs 1/1 Running 0 5m
elasticsearch-operator-sysctl-r8qhb 1/1 Running 0 5m
es-client-efk-cluster-9f4cc859-sdrsl 1/1 Running 0 4m
es-data-efk-cluster-default-0 1/1 Running 0 4m
es-master-efk-cluster-default-0 1/1 Running 0 4m
fluent-bit-4kxdl 1/1 Running 0 4m
fluent-bit-tmqjb 1/1 Running 0 4m
fluent-bit-w6fs5 1/1 Running 0 4m

After	all	pods	are	“Running,”	let’s	go	ahead	and	connect	to	Kibana	through	port
forwarding	to	our	localhost:

export POD_NAME=$(kubectl get pods --namespace logging -l "app=kibana,release=efk" -
o jsonpath="{.items[0].metadata.name}")

kubectl port-forward $POD_NAME 5601:5601

Now	point	your	web	browser	at	http://localhost:5601	to	open	the	Kibana
dashboard.

To	interact	with	the	logs	forwarded	from	our	Kubernetes	cluster,	you	first	need
to	create	an	index.

The	first	time	you	start	Kibana,	you	will	need	to	navigate	to	the	Management
tab,	and	create	an	index	pattern	for	Kubernetes	logs.	The	system	will	guide	you
through	the	required	steps.

After	you	create	an	index,	you	can	search	through	logs	using	a	Lucene	query
syntax,	such	as	the	following:

log:(WARN|INFO|ERROR|FATAL)

This	returns	all	logs	containing	the	fields	warn,	info,	error,	or	fatal.	You	can	see
an	example	in	Figure	3-4.

http://localhost:5601

Figure	3-4.	The	Kibana	dashboard

In	Kibana,	you	can	perform	ad	hoc	queries	on	the	logs,	and	you	can	build	out
dashboards	to	give	you	an	overview	of	the	environment.

Go	ahead	and	take	some	time	to	explore	the	different	logs	that	you	can	visualize
in	Kibana.

Alerting
Alerting	is	a	double-edged	sword,	and	you	need	to	strike	a	balance	on	what	you
alert	on	versus	what	should	just	be	monitored.	Alerting	on	too	much	causes	alert
fatigue,	and	important	events	will	be	lost	in	all	the	noise.	An	example	would	be
generating	an	alert	any	time	a	pod	fails.	You	might	be	asking,	“Why	wouldn’t	I
want	to	monitor	for	a	pod	failure?”	Well,	the	beauty	of	Kubernetes	is	that	it
provides	features	to	automatically	check	the	health	of	a	container	and	restart	the
container	automatically.	You	really	want	to	focus	alerting	on	events	that	affect
your	Service-Level	Objectives	(SLOs).	SLOs	are	specific	measurable
characteristics	such	as	availability,	throughput,	frequency,	and	response	time	that
you	agree	upon	with	the	end	user	of	your	service.	Setting	SLOs	sets	expectations
with	your	end	users	and	provides	clarity	on	how	the	system	should	behave.
Without	an	SLO,	users	can	form	their	opinion,	which	might	be	an	unrealistic
expectation	of	the	service.	Alerting	in	a	system	like	Kubernetes	needs	an	entirely
new	approach	from	what	we	are	typically	accustomed	to	and	needs	to	focus	on

how	the	end	user	is	experiencing	the	service.	For	example,	if	your	SLO	for	a
frontend	service	is	a	20-ms	response	time	and	you	are	seeing	higher	latency	than
average,	you	want	to	be	alerted	on	the	problem.

You	need	to	decide	what	alerts	are	good	and	require	intervention.	In	typical
monitoring,	you	might	be	accustomed	to	alerting	on	high	CPU	usage,	memory
usage,	or	processes	not	responding.	These	might	seem	like	good	alerts,	but
probably	don’t	indicate	an	issue	that	someone	needs	to	take	immediate	action	on
and	requires	notifying	an	on-call	engineer.	An	alert	to	an	on-call	engineer	should
be	an	issue	that	needs	immediate	human	attention	and	is	affecting	the	UX	of	the
application.	If	you	have	ever	experienced	a	“That	issue	resolved	itself”	scenario,
then	that	is	a	good	indication	that	the	alert	did	not	need	to	contact	an	on-call
engineer.

One	way	to	handle	alerts	that	don’t	need	immediate	action	is	to	focus	on
automating	the	remediation	of	the	cause.	For	example,	when	a	disk	fills	up,	you
could	automate	the	deletion	of	logs	to	free	up	space	on	the	disk.	Also,	utilizing
Kubernetes	liveness	probes	in	your	app	deployment	can	help	autoremediate
issues	with	a	process	that	is	not	responding	in	the	application.

When	building	alerts,	you	also	need	to	consider	alert	thresholds;	if	you	set
thresholds	too	short,	then	you	can	get	a	lot	of	false	positives	with	your	alerts.	It’s
generally	recommended	to	set	a	threshold	of	at	least	five	minutes	to	help
eliminate	false	positives.	Coming	up	with	standard	thresholds	can	help	define	a
standard	and	avoid	micromanaging	many	different	thresholds.	For	example,	you
might	want	to	follow	a	specific	pattern	of	5	minutes,	10	minutes,	30	minutes,	1
hour,	and	so	on.

When	building	notifications	for	alerts	you	want	to	ensure	that	you	provide
relevant	information	in	the	notification,	for	example,	providing	a	link	to	a
“playbook”	that	gives	troubleshooting	or	other	helpful	information	on	resolving
the	issue.	You	should	also	include	information	on	the	datacenter,	region,	app
owner,	and	affected	system	in	notifications.	Providing	all	this	information	will
allow	engineers	to	quickly	formalize	a	theory	around	the	issue.

You	also	need	to	build	notification	channels	to	route	alerts	that	are	fired.	When
thinking	about	“Who	do	I	notify	when	an	alert	is	triggered?”	you	should	ensure
that	notifications	are	not	just	sent	to	a	distribution	list	or	team	emails.	What
tends	to	happen	if	alerts	are	sent	to	larger	groups	is	that	they	end	up	getting

filtered	out	because	users	see	these	as	noise.	You	should	route	notifications	to	the
user	who	is	going	to	take	responsibility	for	the	issue.

With	alerting,	you’ll	never	get	it	perfect	on	day	one,	and	we	could	argue	it	might
never	be	perfect.	You	just	want	to	make	sure	that	you	incrementally	improve	on
alerting	to	preclude	alert	fatigue,	which	can	cause	many	issues	with	staff	burnout
and	your	systems.

NOTE
For	further	insight	on	how	to	approach	alerting	on	and	managing	systems,	read	“My
Philosophy	on	Alerting”	by	Rob	Ewaschuk,	which	is	based	on	Rob’s	observations	as	a	site
reliability	engineer	(SRE)	at	Google.

Best	Practices	for	Monitoring,	Logging,	and
Alerting
Following	are	the	best	practices	that	you	should	adopt	regarding	monitoring,
logging,	and	alerting.

Monitoring

Monitor	nodes	and	all	Kubernetes	components	for	utilization,
saturation,	and	error	rates,	and	monitor	applications	for	rate,	errors,	and
duration.

Use	black-box	monitoring	to	monitor	for	symptoms	and	not	predictive
health	of	a	system.

Use	white-box	monitoring	to	inspect	the	system	and	its	internals	with
instrumentation.

Implement	time-series-based	metrics	to	gain	high-precision	metrics	that
also	allow	you	to	gain	insight	within	the	behavior	of	your	application.

Utilize	monitoring	systems	like	Prometheus	that	provide	key	labeling
for	high	dimensionality;	this	will	give	a	better	signal	to	symptoms	of	an

https://oreil.ly/YPxju

impacting	issue.

Use	average	metrics	to	visualize	subtotals	and	metrics	based	on	factual
data.	Utilize	sum	metrics	to	visualize	the	distribution	across	a	specific
metric.

Logging

You	should	use	logging	in	combination	with	metrics	monitoring	to	get
the	full	picture	of	how	your	environment	is	operating.

Be	cautious	of	storing	logs	for	more	than	30	to	45	days	and,	if	needed,
use	cheaper	resources	for	long-term	archiving.

Limit	usage	of	log	forwarders	in	a	sidecar	pattern,	as	they	will	utilize	a
lot	more	resources.	Opt	for	using	a	DaemonSet	for	the	log	forwarder
and	sending	logs	to	STDOUT.

Alerting

Be	cautious	of	alert	fatigue	because	it	can	lead	to	bad	behaviors	in
people	and	processes.

Always	look	at	incrementally	improving	upon	alerting	and	accept	that	it
will	not	always	be	perfect.

Alert	for	symptoms	that	affect	your	SLO	and	customers	and	not	for
transient	issues	that	don’t	need	immediate	human	attention.

Summary
In	this	chapter	we	discussed	the	patterns,	techniques,	and	tools	that	can	be	used
for	monitoring	our	systems	with	metric	and	log	collection.	The	most	important
piece	to	take	away	from	this	chapter	is	that	you	need	to	rethink	how	you	perform
monitoring	and	do	it	from	the	outset.	Too	many	times	we	see	this	implemented
after	the	fact,	and	it	can	get	you	into	a	very	bad	place	in	understanding	your
system.	Monitoring	is	all	about	having	better	insight	into	a	system	and	being
able	to	provide	better	resiliency,	which	in	turn	provides	a	better	end-user

experience	for	your	application.	Monitoring	distributed	applications	and
distributed	systems	like	Kubernetes	requires	a	lot	of	work,	so	you	must	be	ready
for	it	at	the	beginning	of	your	journey.

Chapter	4.	Configuration,	Secrets,
and	RBAC

The	composable	nature	of	containers	allows	us	as	operators	to	introduce
configuration	data	into	a	container	at	runtime.	This	makes	it	possible	for	us	to
decouple	an	application’s	function	from	the	environment	it	runs	in.	By	means	of
the	conventions	allowed	in	the	container	runtime	to	pass	through	either
environment	variables	or	mount	external	volumes	into	a	container	at	runtime,
you	can	effectively	change	the	configuration	of	the	application	upon	its
instantiation.	As	a	developer,	it	is	important	to	take	into	consideration	the
dynamic	nature	of	this	behavior	and	allow	for	the	use	of	environment	variables
or	the	reading	of	configuration	data	from	a	specific	path	available	to	the
application	runtime	user.

When	moving	sensitive	data	such	as	secrets	into	a	native	Kubernetes	API	object,
it	is	important	to	understand	how	Kubernetes	secures	access	to	the	API.	The
most	commonly	implemented	security	method	in	use	in	Kubernetes	is	Role-
Based	Access	Control	(RBAC)	to	implement	a	fine-grained	permission	structure
around	actions	that	can	be	taken	against	the	API	by	specific	users	or	groups.
This	chapter	covers	some	of	the	best	practices	regarding	RBAC	and	also
provides	a	small	primer.

Configuration	Through	ConfigMaps	and	Secrets
Kubernetes	allows	you	to	natively	provide	configuration	information	to	our
applications	through	ConfigMaps	or	secret	resources.	The	main	differentiator
between	the	two	is	the	way	a	pod	stores	the	receiving	information	and	how	the
data	is	stored	in	the	etcd	data	store.

ConfigMaps
It	is	very	common	to	have	applications	consume	configuration	information
through	some	type	of	mechanism	such	as	command-line	arguments,	environment

variables,	or	files	that	are	available	to	the	system.	Containers	allow	the	developer
to	decouple	this	configuration	information	from	the	application,	which	allows
for	true	application	portability.	The	ConfigMap	API	allows	for	the	injection	of
supplied	configuration	information.	ConfigMaps	are	very	adaptable	to	the
application’s	requirements	and	can	provide	key/value	pairs	or	complex	bulk	data
such	as	JSON,	XML,	or	proprietary	configuration	data.

The	ConfigMaps	not	only	provide	configuration	information	for	pods,	but	can
also	provide	information	to	be	consumed	for	more	complex	system	services	such
as	controllers,	CRDs,	operators,	and	so	on.	As	mentioned	earlier,	the	ConfigMap
API	is	meant	more	for	string	data	that	is	not	really	sensitive	data.	If	your
application	requires	more	sensitive	data,	the	Secrets	API	is	more	appropriate.

For	your	application	to	use	the	ConfigMap	data,	it	can	be	injected	as	either	a
volume	mounted	into	the	pod	or	as	environment	variables.

Secrets
Many	of	the	attributes	and	reasons	for	which	you	would	want	to	use	a
ConfigMap	apply	to	secrets.	The	main	differences	lie	in	the	fundamental	nature
of	a	Secret.	Secret	data	should	be	stored	and	handled	in	a	way	that	can	be	easily
hidden	and	possibly	encrypted	at	rest	if	the	environment	is	configured	as	such.
The	Secret	data	is	represented	as	base64-encoded	information,	and	it	is	critical	to
understand	that	this	is	not	encrypted.	As	soon	as	the	secret	is	injected	into	the
pod,	the	pod	itself	can	see	the	secret	data	in	plain	text.

Secret	data	is	meant	to	be	small	amounts	of	data,	limited	by	default	in
Kubernetes	to	1	MB	in	size,	for	the	base64-encoded	data,	so	ensure	that	the
actual	data	is	approximately	750	KB	because	of	the	overhead	of	the	encoding.
There	are	three	types	of	secrets	in	Kubernetes:

generic

This	is	typically	just	regular	key/value	pairs	that	are	created	from	a	file,	a
directory,	or	from	string	literals	using	the	--from-literal=	parameter,	as
follows:

kubectl create secret generic mysecret --from-literal=key1=$3cr3t1 --from-
literal=key2=@3cr3t2`

docker-registry

This	is	used	by	the	kubelet	when	passed	in	a	pod	template	if	there	is	an
imagePullsecret	to	provide	the	credentials	needed	to	authenticate	to	a
private	Docker	registry:

kubectl create secret docker-registry registryKey --docker-server
myreg.azurecr.io --docker-username myreg --docker-password $up3r$3cr3tP@ssw0rd -
-docker-email ignore@dummy.com

tls

This	creates	a	Transport	Layer	Security	(TLS)	secret	from	a	valid
public/private	key	pair.	As	long	as	the	cert	is	in	a	valid	PEM	format,	the	key
pair	will	be	encoded	as	a	secret	and	can	be	passed	to	the	pod	to	use	for
SSL/TLS	needs:

kubectl create secret tls www-tls --key=./path_to_key/wwwtls.key --
cert=./path_to_crt/wwwtls.crt

Secrets	are	also	mounted	into	tmpfs	only	on	the	nodes	that	have	a	pod	that
requires	the	secret	and	are	deleted	when	the	pod	that	needs	it	is	gone.	This
prevents	any	secrets	from	being	left	behind	on	the	disk	of	the	node.	Although
this	might	seem	secure,	it	is	important	to	know	that	by	default,	secrets	are	stored
in	the	etcd	datastore	of	Kubernetes	in	plain	text,	and	it	is	important	that	the
system	administrators	or	cloud	service	provider	take	efforts	to	ensure	that	the
security	of	the	etcd	environment,	including	mTLS	between	the	etcd	nodes	and
enabling	encryption	at	rest	for	the	etcd	data.	More	recent	versions	of	Kubernetes
use	etcd3	and	have	the	ability	to	enable	etcd	native	encryption;	however,	this	is	a
manual	process	that	must	be	configured	in	the	API	server	configuration	by
specifying	a	provider	and	the	proper	key	media	to	properly	encrypt	secret	data
held	in	etcd.	As	of	Kubernetes	v1.10	(it	has	been	promoted	to	beta	in	v1.12),	we
have	the	KMS	provider,	which	promises	to	provide	a	more	secure	key	process	by
using	third-party	KMS	systems	to	hold	the	proper	keys.

Common	Best	Practices	for	the	ConfigMap	and

Secrets	APIs
The	majority	of	issues	that	arise	from	the	use	of	a	ConfigMap	or	secret	are
incorrect	assumptions	on	how	changes	are	handled	when	the	data	held	by	the
object	is	updated.	By	understanding	the	rules	of	the	road	and	adding	a	few	tricks
to	make	it	easier	to	abide	by	those	rules,	you	can	steer	away	from	trouble:

To	support	dynamic	changes	to	your	application	without	having	to
redeploy	new	versions	of	the	pods,	mount	your	ConfigMaps/Secrets	as
a	volume	and	configure	your	application	with	a	file	watcher	to	detect
the	changed	file	data	and	reconfigure	itself	as	needed.	The	following
code	shows	a	Deployment	that	mounts	a	ConfigMap	and	a	Secret	file	as
a	volume:

apiVersion: v1
kind: ConfigMap
metadata:
 name: nginx-http-config
 namespace: myapp-prod
data:
 config: |
 http {
 server {
 location / {
 root /data/html;
 }

 location /images/ {
 root /data;
 }
 }
 }

apiVersion: v1
kind: Secret
metadata:
 name: myapp-api-key
type: Opaque
data:
 myapikey: YWRtd5thSaW4=

apiVersion: apps/v1
kind: Deployment
metadata:

 name: mywebapp
 namespace: myapp-prod
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 8080
 volumeMounts:
 - mountPath: /etc/nginx
 name: nginx-config
 - mountPath: /usr/var/nginx/html/keys
 name: api-key
 volumes:
 - name: nginx-config
 configMap:
 name: nginx-http-config
 items:
 - key: config
 path: nginx.conf
 - name: api-key
 secret:
 name: myapp-api-key
 secretname: myapikey

NOTE
There	are	a	couple	of	things	to	consider	when	using	volumeMounts.	First,	as	soon	as	the
ConfigMap/Secret	is	created,	add	it	as	a	volume	in	your	pod’s	specification.	Then	mount	that
volume	into	the	container’s	filesystem.	Each	property	name	in	the	ConfigMap/Secret	will
become	a	new	file	in	the	mounted	directory,	and	the	contents	of	each	file	will	be	the	value
specified	in	the	ConfigMap/Secret.	Second,	avoid	mounting	ConfigMaps/Secrets	using	the
volumeMounts.subPath	property.	This	will	prevent	the	data	from	being	dynamically	updated
in	the	volume	if	you	update	a	ConfigMap/Secret	with	new	data.

ConfigMap/Secrets	must	exist	in	the	namespace	for	the	pods	that	will
consume	them	prior	to	the	pod	being	deployed.	The	optional	flag	can	be
used	to	prevent	the	pods	from	not	starting	if	the	ConfigMap/Secret	is
not	present.

Use	an	admission	controller	to	ensure	specific	configuration	data	or	to
prevent	deployments	that	do	not	have	specific	configuration	values	set.
An	example	would	be	if	you	require	all	production	Java	workloads	to

have	certain	JVM	properties	set	in	production	environments.	There	is	an
alpha	API	called	PodPresets	that	will	allow	ConfigMaps	and	secrets	to
be	applied	to	all	pods	based	on	an	annotation,	without	needing	to	write	a
custom	admission	controller.

If	you’re	using	Helm	to	release	applications	into	your	environment,	you
can	use	a	life	cycle	hook	to	ensure	the	ConfigMap/Secret	template	is
deployed	before	the	Deployment	is	applied.

Some	applications	require	their	configuration	to	be	applied	as	a	single
file	such	as	a	JSON	or	YAML	file.	ConfigMap/Secrets	allows	an	entire
block	of	raw	data	by	using	the	|	symbol,	as	demonstrated	here:

apiVersion: v1
kind: ConfigMap
metadata:
 name: config-file
data:
 config: |
 {
 "iotDevice": {
 "name": "remoteValve",
 "username": "CC:22:3D:E3:CE:30",
 "port": 51826,
 "pin": "031-45-154"
 }
 }

If	the	application	uses	system	environment	variables	to	determine	its
configuration,	you	can	use	the	injection	of	the	ConfigMap	data	to	create
an	environment	variable	mapping	into	the	pod.	There	are	two	main
ways	to	do	this:	mounting	every	key/value	pair	in	the	ConfigMap	as	a
series	of	environment	variables	into	the	pod	using	envFrom	and	then
using	configMapRef	or	secretRef,	or	assigning	individual	keys	with
their	respective	values	using	the	configMapKeyRef	or	secretKeyRef.

If	you’re	using	the	configMapKeyRef	or	secretKeyRef	method,	be
aware	that	if	the	actual	key	does	not	exist,	this	will	prevent	the	pod	from
starting.

If	you’re	loading	all	of	the	key/value	pairs	from	the	ConfigMap/Secret

into	the	pod	using	envFrom,	any	keys	that	are	considered	invalid
environment	values	will	be	skipped;	however,	the	pod	will	be	allowed
to	start.	The	event	for	the	pod	will	have	an	event	with	reason
InvalidVariableNames	and	the	appropriate	message	about	which	key
was	skipped.	The	following	code	is	an	example	of	a	Deployment	with	a
ConfigMap	and	Secret	reference	as	an	environment	variable:

apiVersion: v1
kind: ConfigMap
metadata:
 name: mysql-config
data:
 mysqldb: myappdb1
 user: mysqluser1

apiVersion: v1
kind: Secret
metadata:
 name: mysql-secret
type: Opaque
data:
 rootpassword: YWRtJasdhaW4=
 userpassword: MWYyZDigKJGUyfgKJBmU2N2Rm

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp-db-deploy
spec:
 selector:
 matchLabels:
 app: myapp-db
 template:
 metadata:
 labels:
 app: myapp-db
 spec:
 containers:
 - name: myapp-db-instance
 image: mysql
 resources:
 limits:
 memory: "128Mi"
 cpu: "500m"
 ports:
 - containerPort: 3306

 env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-secret
 key: rootpassword
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-secret
 key: userpassword
 - name: MYSQL_USER
 valueFrom:
 configMapKeyRef:
 name: mysql-config
 key: user
 - name: MYSQL_DB
 valueFrom:
 configMapKeyRef:
 name: mysql-config
 key: mysqldb

If	there	is	a	need	to	pass	command-line	arguments	to	your	containers,
environment	variable	data	can	be	sourced	using	$(ENV_KEY)
interpolation	syntax:

[...]
spec:
 containers:
 - name: load-gen
 image: busybox
 command: ["/bin/sh"]
args: ["-c", "while true; do curl $(WEB_UI_URL); sleep 10;done"]
 ports:
 - containerPort: 8080
 env:
 - name: WEB_UI_URL
 valueFrom:
 configMapKeyRef:
 name: load-gen-config
 key: url

When	consuming	ConfigMap/Secret	data	as	environment	variables,	it	is
very	important	to	understand	that	updates	to	the	data	in	the
ConfigMap/Secret	will	not	update	in	the	pod	and	will	require	a	pod

restart	either	through	deleting	the	pods	and	letting	the	ReplicaSet
controller	create	a	new	pod,	or	triggering	a	Deployment	update,	which
will	follow	the	proper	application	update	strategy	as	declared	in	the
Deployment	specification.

It	is	easier	to	assume	that	all	changes	to	a	ConfigMap/Secret	require	an
update	to	the	entire	deployment;	this	ensures	that	even	if	you’re	using
environment	variables	or	volumes,	the	code	will	take	the	new
configuration	data.	To	make	this	easier,	you	can	use	a	CI/CD	pipeline	to
update	the	name	property	of	the	ConfigMap/Secret	and	also	update	the
reference	in	the	deployment,	which	will	then	trigger	an	update	through
normal	Kubernetes	update	strategies	of	your	deployment.	We	will
explore	this	in	the	following	example	code.	If	you’re	using	Helm	to
release	your	application	code	into	Kubernetes,	you	can	take	advantage
of	an	annotation	in	the	Deployment	template	to	check	the	sha256
checksum	of	the	ConfigMap/Secret.	This	triggers	Helm	to	update	the
Deployment	using	the	helm upgrade	command	when	the	data	within	a
ConfigMap/Secret	is	changed:

apiVersion: apps/v1
kind: Deployment
[...]
spec:
 template:
 metadata:
 annotations:
 checksum/config: {{ include (print $.Template.BasePath "/configmap.yaml") .
| sha256sum }}
[...]

Best	practices	specific	to	secrets
Because	of	the	nature	of	sensitive	data	of	the	Secrets	API,	there	are	naturally
more	specific	best	practices,	which	are	mainly	around	the	security	of	the	data
itself:

The	original	specification	for	the	Secrets	API	outlined	a	pluggable
architecture	to	allow	the	actual	storage	of	the	secret	to	be	configurable
based	on	requirements.	Solutions	such	as	HashiCorp	Vault,	Aqua
Security,	Twistlock,	AWS	Secrets	Manager,	Google	Cloud	KMS,	or

Azure	Key	Vault	allow	the	use	of	external	storage	systems	for	secret
data	using	a	higher	level	of	encryption	and	auditability	than	what	is
offered	natively	in	Kubernetes.

Assign	an	imagePullSecrets	to	a	serviceaccount	that	the	pod	will
use	to	automatically	mount	the	secret	without	having	to	declare	it	in	the
pod.spec.	You	can	patch	the	default	service	account	for	the	namespace
of	your	application	and	add	the	imagePullSecrets	to	it	directly.	This
automatically	adds	it	to	all	pods	in	the	namespace:

Create the docker-registry secret first
kubectl create secret docker-registry registryKey --docker-server
myreg.azurecr.io --docker-username myreg --docker-password $up3r$3cr3tP@ssw0rd
--docker-email ignore@dummy.com

patch the default serviceaccount for the namespace you wish to configure
kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name":
"registryKey"}]}'

Use	CI/CD	capabilities	to	get	secrets	from	a	secure	vault	or	encrypted
store	with	a	Hardware	Security	Module	(HSM)	during	the	release
pipeline.	This	allows	for	separation	of	duties.	Security	management
teams	can	create	and	encrypt	the	secrets,	and	developers	just	need	to
reference	the	names	of	the	secret	expected.	This	is	also	the	preferred
DevOps	process	to	ensure	a	more	dynamic	application	delivery	process.

RBAC
When	working	in	large,	distributed	environments,	it	is	very	common	that	some
type	of	security	mechanism	is	needed	to	prevent	unauthorized	access	to	critical
systems.	There	are	numerous	strategies	around	how	to	limit	access	to	resources
in	computer	systems,	but	the	majority	all	go	through	the	same	phases.	Using	an
analogy	of	a	common	experience	such	as	flying	to	a	foreign	country	can	help
explain	the	processes	that	happen	in	systems	like	Kubernetes.	We	can	use	the
common	travler’s	experience	with	a	passport,	travel	visa,	and	customs	or	border
guards	to	show	the	process:

1.	 Passport	(subject	authentication).	Usually	you	need	to	have	a	passport

issued	by	some	government	agency	that	will	offer	some	sort	of
verification	as	to	who	you	are.	This	would	be	equivalent	to	a	user
account	in	Kubernetes.	Kubernetes	relies	on	an	external	authority	to
authenticate	users;	however,	service	accounts	are	a	type	of	account	that
is	managed	directly	by	Kubernetes.

2.	 Visa	or	travel	policy	(authorization).	Countries	will	have	formal
agreements	to	accept	travelers	holding	passports	from	other	countries
through	formal	short-term	agreements	such	as	visas.	The	visas	will	also
outline	what	the	visitor	may	do	and	for	how	long	they	may	stay	in	the
visiting	country,	depending	on	the	specific	type	of	visa.	This	would	be
equivalent	to	authorization	in	Kubernetes.	Kubernetes	has	different
authorization	methods,	but	the	most	used	is	RBAC.	This	allows	very
granular	access	to	different	API	capabilities.

3.	 Border	patrol	or	customs	(admission	control).	When	entering	a	foreign
country,	usually	there	is	a	body	of	authority	that	will	check	the	requisite
documents,	including	the	passport	and	visa,	and,	in	many	cases,	inspect
what	is	being	brought	into	the	country	to	ensure	it	abides	by	that
country’s	laws.	In	Kubernetes	this	is	equivalent	to	admission
controllers.	Admission	controllers	can	allow,	deny,	or	change	the
requests	into	the	API	based	upon	rules	and	policies	that	are	defined.
Kubernetes	has	many	built-in	admission	controllers	such	as
PodSecurity,	ResourceQuota,	and	ServiceAccount	controllers.
Kubernetes	also	allows	for	dynamic	controllers	through	the	use	of
validating	or	mutating	admission	controllers.

The	focus	of	this	section	is	the	least	understood	and	the	most	avoided	of	these
three	areas:	RBAC.	Before	we	outline	some	of	the	best	practices,	we	first	must
present	a	primer	on	Kubernetes	RBAC.

RBAC	Primer
The	RBAC	process	in	Kubernetes	has	three	main	components	that	need	to	be
defined:	the	subject,	the	rule,	and	the	role	binding.

Subjects

The	first	component	is	the	subject,	the	item	that	is	actually	being	checked	for
access.	The	subject	is	usually	a	user,	a	service	account,	or	a	group.	As	mentioned
earlier,	users	as	well	as	groups	are	handled	outside	of	Kubernetes	by	the
authorization	module	used.	We	can	categorize	these	as	basic	authentication,
x.509	client	certificates,	or	bearer	tokens.	The	most	common	implementations
use	either	x.509	client	certificates	or	some	type	of	bearer	token	using	something
like	an	OpenID	Connect	system	such	as	Azure	Active	Directory	(Azure	AD),
Salesforce,	or	Google.

NOTE
Service	accounts	in	Kubernetes	are	different	than	user	accounts	in	that	they	are	namespace
bound,	internally	stored	in	Kubernetes;	they	are	meant	to	represent	processes,	not	people,	and
are	managed	by	native	Kubernetes	controllers.

Rules
Simply	stated,	this	is	the	actual	list	of	actions	that	can	be	performed	on	a	specific
object	(resource)	or	a	group	of	objects	in	the	API.	Verbs	align	to	typical	CRUD
(Create,	Read,	Update,	and	Delete)	type	operations	but	with	some	added
capabilities	in	Kubernetes	such	as	watch,	list,	and	exec.	The	objects	align	to
the	different	API	components	and	are	grouped	together	in	categories.	Pod
objects,	as	an	example,	are	part	of	the	core	API	and	can	be	referenced	with
apiGroup: ""	whereas	deployments	are	under	the	app	API	Group.	This	is	the
real	power	of	the	RBAC	process	and	probably	what	intimidates	and	confuses
people	when	creating	proper	RBAC	controls.

Roles
Roles	allow	the	definition	of	scope	of	the	rules	defined.	Kubernetes	has	two
types	of	roles,	role	and	clusterRole,	the	difference	being	that	role	is	specific
to	a	namespace,	and	clusterRole	is	a	cluster-wide	role	across	all	namespaces.
An	example	Role	definition	with	namespace	scope	would	be	as	follows:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:

 namespace: default
 name: pod-viewer
rules:
- apiGroups: [""] # "" indicates the core API group
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

RoleBindings
The	RoleBinding	allows	a	mapping	of	a	subject	like	a	user	or	group	to	a	specific
role.	Bindings	also	have	two	modes:	roleBinding,	which	is	specific	to	a
namespace,	and	clusterRoleBinding,	which	is	across	the	entire	cluster.	Here’s
an	example	RoleBinding	with	namespace	scope:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: noc-helpdesk-view
 namespace: default
subjects:
- kind: User
 name: helpdeskuser@example.com
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role #this must be Role or ClusterRole
 name: pod-viewer # this must match the name of the Role or ClusterRole to bind to
 apiGroup: rbac.authorization.k8s.io

RBAC	Best	Practices
RBAC	is	a	critical	component	of	running	a	secure,	dependable,	and	stable
Kubernetes	environment.	The	concepts	underlying	RBAC	can	be	complex;
however,	adhering	to	a	few	best	practices	can	ease	some	of	the	major	stumbling
blocks:

Applications	that	are	developed	to	run	in	Kubernetes	rarely	ever	need
an	RBAC	role	and	role	binding	associated	to	it.	Only	if	the	application
code	actually	interacts	directly	with	the	Kubernetes	API	directly	does
the	application	require	RBAC	configuration.

If	the	application	does	need	to	directly	access	the	Kubernetes	API	to
perhaps	change	configuration	depending	on	endpoints	being	added	to	a

service,	or	if	it	needs	to	list	all	of	the	pods	in	a	specific	namespace,	the
best	practice	is	to	create	a	new	service	account	that	is	then	specified	in
the	pod	specification.	Then,	create	a	role	that	has	the	least	amount	of
privileges	needed	to	accomplish	its	goal.

Use	an	OpenID	Connect	service	that	enables	identity	management	and,
if	needed,	two-factor	authentication.	This	will	allow	for	a	higher	level
of	identity	authentication.	Map	user	groups	to	roles	that	have	the	least
amount	of	privileges	needed	to	accomplish	the	job.

Along	with	the	aforementioned	practice,	you	should	use	Just	in	Time
(JIT)	access	systems	to	allow	site	reliability	engineers	(SREs),
operators,	and	those	who	might	need	to	have	escalated	privileges	for	a
short	period	of	time	to	accomplish	a	very	specific	task.	Alternatively,
these	users	should	have	different	identities	that	are	more	heavily	audited
for	sign-on,	and	those	accounts	should	have	more	elevated	privileges
assigned	by	the	user	account	or	group	bound	to	a	role.

Specific	service	accounts	should	be	used	for	CI/CD	tools	that	deploy
into	your	Kubernetes	clusters.	This	ensures	for	auditability	within	the
cluster	and	an	understanding	of	who	might	have	deployed	or	deleted
any	objects	in	a	cluster.

If	you’re	using	Helm	to	deploy	applications,	the	default	service	account
is	Tiller,	deployed	to	kube-system.	It	is	better	to	deploy	Tiller	into	each
namespace	with	a	service	account	specifically	for	Tiller	that	is	scoped
for	that	namespace.	In	the	CI/CD	tool	that	calls	the	Helm
install/upgrade	command,	as	a	prestep,	initialize	the	Helm	client	with
the	service	account	and	the	specific	namespace	for	the	deployment.	The
service	account	name	can	be	the	same	for	each	namespace,	but	the
namespace	should	be	specific.	It	is	important	to	call	out	that	as	of	this
publication,	Helm	v3	is	in	alpha	state	and	one	of	its	core	principles	is
that	Tiller	is	no	longer	needed	to	run	in	a	cluster.	An	example	Helm	Init
with	a	Service	account	and	namespace	would	look	like	this:

kubectl create namespace myapp-prod

kubectl create serviceaccount tiller --namespace myapp-prod

cat <<EOF | kubectl apply -f -
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: tiller
 namespace: myapp-prod
rules:
- apiGroups: ["", "batch", "extensions", "apps"]
 resources: ["*"]
 verbs: ["*"]
EOF

cat <<EOF | kubectl apply -f -
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: tiller-binding
 namespace: myapp-prod
subjects:
- kind: ServiceAccount
 name: tiller
 namespace: myapp-prod
roleRef:
 kind: Role
 name: tiller
 apiGroup: rbac.authorization.k8s.io
 EOF

helm init --service-account=tiller --tiller-namespace=myapp-prod

helm install ./myChart --name myApp --namespace myapp-prod --set
global.namespace=myapp-prod

NOTE
Some	public	Helm	charts	do	not	have	value	entries	for	namespace	choices	to	deploy	the
application	components.	This	might	require	customization	of	the	Helm	chart	directly	or	using
an	elevated	Tiller	account	that	can	deploy	to	any	namespace	and	has	rights	to	create
namespaces.

Limit	any	applications	that	require	watch	and	list	on	the	Secrets	API.
This	basically	allows	the	application	or	the	person	who	deployed	the
pod	to	view	the	secrets	in	that	namespace.	If	an	application	needs	to

access	the	Secrets	API	for	specific	secrets,	limit	using	get	on	any
specific	secrets	that	the	application	needs	to	read	outside	of	those	that	it
is	directly	assigned.

Summary
Principles	for	developing	applications	for	cloud	native	delivery	is	a	topic	for
another	day,	but	it	is	universally	accepted	that	strict	separation	of	configuration
from	code	is	a	key	principal	for	success.	With	native	objects	for	nonsensitive
data,	the	ConfigMap	API,	and	for	sensitive	data,	the	Secrets	API,	Kubernetes
can	now	manage	this	process	in	a	declarative	approach.	As	more	and	more
critical	data	is	represented	and	stored	natively	in	the	Kubernetes	API,	it	is	critical
to	secure	access	to	those	APIs	through	proper	gated	security	processes	such	as
RBAC	and	integrated	authentication	systems.

As	you’ll	see	throughout	the	rest	of	this	book,	these	principles	permeate	every
aspect	of	the	proper	deployment	of	services	into	a	Kubernetes	platform	to	build	a
stable,	reliable,	secure,	and	robust	system.

Chapter	5.	Continuous
Integration,	Testing,	and
Deployment

In	this	chapter,	we	look	at	the	key	concepts	of	how	to	integrate	a	continuous
integration/continuous	deployment	(CI/CD)	pipeline	to	deliver	your	applications
to	Kubernetes.	Building	a	well-integrated	pipeline	will	enable	you	to	deliver
applications	to	production	with	confidence,	so	here	we	look	at	the	methods,
tools,	and	processes	to	enable	CI/CD	in	your	environment.	The	goal	of	CI/CD	is
to	have	a	fully	automated	process,	from	a	developer	checking	in	code	to	rolling
out	the	new	code	to	production.	You	want	to	avoid	manually	rolling	out	updates
to	your	apps	deployed	to	Kubernetes	because	it	can	be	very	error	prone.
Manually	managing	application	updates	in	Kubernetes	leads	to	configuration
drift	and	fragile	deployment	updates,	and	overall	agility	delivering	an
application	is	lost.

We	cover	the	following	topics	in	this	chapter:

Version	control

CI

Testing

Tagging	images

CD

Deployment	strategies

Testing	Deployments

Chaos	testing

We	also	go	through	an	example	CI/CD	pipeline,	which	consists	of	the	following
tasks:

Pushing	code	changes	to	the	Git	repository

Running	a	build	of	the	application	code

Running	test	against	the	code

Building	a	container	image	on	a	successful	test

Pushing	the	container	image	to	a	container	registry

Deploying	the	application	to	Kubernetes

Running	a	test	against	a	deployed	application

Performing	rolling	upgrades	on	Deployments

Version	Control
Every	CI/CD	pipeline	starts	with	version	control,	which	maintains	a	running
history	of	application	and	configuration	code	changes.	Git	has	become	the
industry	standard	as	a	source-control	management	platform,	and	every	Git
repository	will	contain	a	master	branch.	A	master	branch	contains	your
production	code.	You	will	have	other	branches	for	feature	and	development	work
that	eventually	will	also	be	merged	to	your	master	branch.	There	are	many	ways
to	set	up	a	branching	strategy,	and	the	setup	will	be	very	dependent	on	the
organization	structure	and	separation	of	duties.	We	find	that	including	both
application	code	and	configuration	code,	such	as	a	Kubernetes	manifest	or	Helm
charts,	helps	promote	good	DevOps	principles	of	communication	and
collaboration.	Having	both	application	developers	and	operation	engineers
collaborate	in	a	single	repository	builds	confidence	in	a	team	to	deliver	an
application	to	production.

Continuous	Integration
CI	is	the	process	of	integrating	code	changes	continuously	into	a	version-control
repository.	Instead	of	committing	large	changes	less	often,	you	commit	smaller
changes	more	often.	Each	time	a	code	change	is	committed	to	the	repository,	a
build	is	kicked	off.	This	allows	you	to	have	a	quicker	feedback	loop	into	what

might	have	broken	the	application	if	problems	indeed	arise.	At	this	point	you
might	be	asking,	“Why	do	I	need	to	know	about	how	the	application	is	built,
isn’t	that	the	application	developer’s	role?”	Traditionally,	this	might	have	been
the	case,	but	as	companies	move	toward	embracing	a	DevOps	culture,	the
operations	team	comes	closer	to	the	application	code	and	software	development
workflows.

There	are	many	solutions	that	provide	CI,	with	Jenkins	being	one	of	the	more
popular	tools.

Testing
The	goal	of	running	tests	in	the	pipeline	is	to	quickly	provide	a	feedback	loop	for
code	changes	that	break	the	build.	The	language	that	you’re	using	will	determine
the	testing	framework	you	use.	For	example,	Go	applications	can	use	go test
for	running	a	suite	of	unit	tests	against	your	code	base.	Having	an	extensive	test
suite	helps	to	avoid	delivering	bad	code	into	your	production	environment.
You’ll	want	to	ensure	that	if	tests	fail	in	the	pipeline,	the	build	fails	after	the	test
suite	runs.	You	don’t	want	to	build	the	container	image	and	push	it	to	a	registry
if	you	have	failing	tests	against	your	code	base.

Again,	you	might	be	asking,	“Isn’t	creating	tests	a	developer’s	job?”	As	you
begin	automating	the	delivery	of	infrastructure	and	applications	to	production,
you	need	to	think	about	running	automated	tests	against	all	of	the	pieces	of	the
code	base.	For	example,	in	Chapter	2,	we	talked	about	using	Helm	to	package
applications	for	Kubernetes.	Helm	includes	a	tool	called	helm lint,	which	runs
a	series	of	tests	against	a	chart	to	examine	any	potential	issues	with	the	chart
provided.	There	are	many	different	tests	that	need	to	be	run	in	an	end-to-end
pipeline.	Some	are	the	developer’s	responsibility,	like	unit	testing	for	the
application,	but	others,	like	smoke	testing,	will	be	a	joint	effort.	Testing	the	code
base	and	its	delivery	to	production	is	a	team	effort	and	needs	to	be	implemented
end	to	end.

Container	Builds
When	building	your	images,	you	should	optimize	the	size	of	the	image.	Having	a

smaller	image	decreases	the	time	it	takes	to	pull	and	deploy	the	image,	and	also
increases	the	security	of	the	image.	There	are	multiple	ways	of	optimizing	the
image	size,	but	some	do	have	trade-offs.	The	following	strategies	will	help	you
build	the	smallest	image	possible	for	your	application:

Multistage	builds

These	allow	you	to	remove	the	dependencies	not	needed	for	your
applications	to	run.	For	example,	with	Golang,	we	don’t	need	all	the	build
tools	used	to	build	the	static	binary,	so	multistage	builds	allow	you	in	a
single	Dockerfile	to	run	a	build	step	with	the	final	image	containing	only	the
static	binary	that’s	needed	to	run	the	application.

Distroless	base	images

These	remove	all	the	unneeded	binaries	and	shells	from	the	image.	This
really	reduces	the	size	of	the	image	and	increases	the	security.	The	trade-off
with	distroless	images	is	you	don’t	have	a	shell,	so	you	can’t	attach	a
debugger	to	the	image.	You	might	think	this	is	great,	but	it	can	be	a	pain	to
debug	an	application.	Distroless	images	contain	no	package	manager,	shell,
or	other	typical	OS	packages,	so	you	might	not	have	access	to	the	debugging
tools	you	are	accustomed	to	with	a	typical	OS.

Optimized	base	images

These	are	images	that	focus	on	removing	the	cruft	out	of	the	OS	layer	and
provide	a	slimmed-down	image.	For	example,	Alpine	provides	a	base	image
that	starts	at	just	10	MB,	and	it	also	allows	you	to	attach	a	local	debugger	for
local	development.	Other	distros	also	typically	offer	an	optimized	base
image,	such	as	Debian’s	Slim	image.	This	might	be	a	good	option	for	you
because	its	optimized	images	give	you	capabilities	you	expect	for
development	while	also	optimizing	for	image	size	and	lower	security
exposure.

Optimizing	your	images	is	extremely	important	and	often	overlooked	by	users.
You	might	have	reasons	due	to	company	standards	for	OSes	that	are	approved
for	use	in	the	enterprise,	but	push	back	on	these	so	that	you	can	maximize	the
value	of	containers.

We	have	found	that	companies	starting	out	with	Kubernetes	tend	to	be	successful

with	using	their	current	OS	but	then	choose	a	more	optimized	image,	like	Debian
Slim.	After	you	mature	in	operationalizing	and	developing	against	a	container
environment,	you’ll	be	comfortable	with	distroless	images.

Container	Image	Tagging
Another	step	in	the	CI	pipeline	is	to	build	a	Docker	image	so	that	you	have	an
image	artifact	to	deploy	to	an	environment.	It’s	important	to	have	an	image
tagging	strategy	so	that	you	can	easily	identify	the	versioned	images	you	have
deployed	to	your	environments.	One	of	the	most	important	things	we	can’t
preach	enough	about	is	not	to	use	“latest”	as	an	image	tag.	Using	that	as	an
image	tag	is	not	a	version	and	will	lead	to	not	having	the	ability	to	identify	what
code	change	belongs	to	the	rolled-out	image.	Every	image	that	is	built	in	the	CI
pipeline	should	have	a	unique	tag	for	the	built	image.

There	are	multiple	strategies	we’ve	found	to	be	effective	when	tagging	images	in
the	CI	pipeline.	The	following	strategies	allow	you	to	easily	identify	the	code
changes	and	the	build	with	which	they	are	associated:

BuildID

When	a	CI	build	kicks	off,	it	has	a	buildID	associated	with	it.	Using	this	part
of	the	tag	allows	you	to	reference	which	build	assembled	the	image.

Build	System-BuildID

This	one	is	the	same	as	BuildID	but	adds	the	Build	System	for	users	who
have	multiple	build	systems.

Git	Hash

On	new	code	commits,	a	Git	hash	is	generated,	and	using	the	hash	for	the	tag
allows	you	to	easily	reference	which	commit	generated	the	image.

githash-buildID

This	allows	you	to	reference	both	the	code	commit	and	the	buildID	that
generated	the	image.	The	only	caution	here	is	that	the	tag	can	be	kind	of
long.

Continuous	Deployment
CD	is	the	process	by	which	changes	that	have	passed	successfully	through	the	CI
pipeline	are	deployed	to	production	without	human	intervention.	Containers
provide	a	great	advantage	for	deploying	changes	into	production.	Container
images	become	an	immutable	object	that	can	be	promoted	through	dev	and
staging	and	into	production.	For	example,	one	of	the	major	issues	we’ve	always
had	has	been	maintaining	consistent	environments.	Almost	everyone	has
experienced	a	Deployment	that	works	fine	in	staging,	but	when	it	gets	promoted
to	production,	it	breaks.	This	is	due	to	having	configuration	drift,	with	libraries
and	versioning	of	components	differing	in	each	environment.	Kubernetes	gives
us	a	declarative	way	to	describe	our	Deployment	objects	that	can	be	versioned
and	deployed	in	a	consistent	manner.

One	thing	to	keep	in	mind	is	that	you	need	to	have	a	solid	CI	pipeline	set	up
before	focusing	on	CD.	If	you	don’t	have	a	robust	set	of	tests	to	catch	issues
early	in	the	pipeline,	you’ll	end	up	rolling	bad	code	to	all	your	environments.

Deployment	Strategies
Now	that	we	learned	the	principles	of	CD,	let’s	take	a	look	at	the	different
rollout	strategies	that	you	can	use.	Kubernetes	provides	multiple	strategies	to	roll
out	new	versions	of	your	application.	And	even	though	it	has	a	built-in
mechanism	to	provide	rolling	updates,	you	can	also	utilize	some	more	advanced
strategies.	Here,	we	examine	the	following	strategies	to	deliver	updates	to	your
application:

Rolling	updates

Blue/green	deployments

Canary	deployments

Rolling	updates	are	built	into	Kubernetes	and	allow	you	to	trigger	an	update	to
the	currently	running	application	without	downtime.	For	example,	if	you	took
your	frontend	app	that	is	currently	running	frontend:v1	and	updated	the
Deployment	to	frontend:v2,	Kubernetes	would	update	the	replicas	in	a	rolling
fashion	to	frontend:v2.	Figure	5-1	depicts	a	rolling	update.

Figure	5-1.	A	Kubernetes	rolling	update

A	Deployment	object	also	lets	you	configure	the	maximum	amount	of	replicas	to
be	updated	and	the	maximum	unavailable	pods	during	the	rollout.	The	following
manifest	is	an	example	of	how	you	specify	the	rolling	update	strategy:

kind: Deployment
apiVersion: v1
metadata:
 name: frontend
spec:
 replicas: 3
 template:
 spec:
 containers:
 - name: frontend
 image: brendanburns/frontend:v1

 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 1 # Maximum amount of replicas to update at one time
 maxUnavailable: 1 # Maximum amount of replicas unavailable during rollout

You	need	to	be	cautious	with	rolling	updates	because	using	this	strategy	can
cause	dropped	connections.	To	deal	with	this	issue,	you	can	utilize	readiness
probes	and	preStop	life	cycle	hooks.	The	readiness	probe	ensures	that	the	new
version	deployed	is	ready	to	accept	traffic,	whereas	the	preStop	hook	can	ensure
that	connections	are	drained	on	the	current	deployed	application.	The	life	cycle
hook	is	called	before	the	container	exits	and	is	synchronous,	so	it	must	complete
before	the	final	termination	signal	is	given.	The	following	example	implements	a
readiness	probe	and	life	cycle	hook:

kind: Deployment
apiVersion: v1
metadata:
 name: frontend
spec:
 replicas: 3
 template:
 spec:
 containers:
 - name: frontend
 image: brendanburns/frontend:v1
 livenessProbe:
 # ...
 readinessProbe:
 httpGet:
 path: /readiness # probe endpoint
 port: 8888
 lifecycle:
 preStop:
 exec:
 command: ["/usr/sbin/nginx","-s","quit"]
 strategy:
 # ...

The	preStop	life	cycle	hook	in	this	example	will	gracefully	exit	NGINX,
whereas	a	SIGTERM	conducts	a	nongraceful,	quick	exit.

Another	concern	with	rolling	updates	is	that	you	now	have	two	versions	of	the
application	running	at	the	same	time	during	the	rollover.	Your	database	schema

needs	to	support	both	versions	of	the	application.	You	can	also	use	a	feature	flag
strategy	in	which	your	schema	indicates	the	new	columns	created	by	the	new
app	version.	After	the	rolling	update	has	completed,	the	old	columns	can	be
removed.

We	have	also	defined	a	readiness	and	liveness	probe	in	our	Deployment
manifest.	A	readiness	probe	will	ensure	that	your	application	is	ready	to	serve
traffic	before	putting	it	behind	the	service	as	an	endpoint.	The	liveness	probe
ensures	that	your	application	is	healthy	and	running,	and	restarts	the	pod	if	it
fails	its	liveness	probe.	Kubernetes	can	automatically	restart	a	failed	pod	only	if
the	pod	exits	on	error.	For	example,	the	liveness	probe	can	check	its	endpoint
and	restart	it	if	we	had	a	deadlock	from	which	the	pod	did	not	exit.

Blue/green	deployments	allow	you	to	release	your	application	in	a	predictable
manner.	With	blue/green	deployments,	you	control	when	the	traffic	is	shifted
over	to	the	new	environment,	so	it	gives	you	a	lot	of	control	over	the	rollout	of	a
new	version	of	your	application.	With	blue/green	deployments,	you	are	required
to	have	the	capacity	to	deploy	both	the	existing	and	new	environment	at	the
same	time.	These	types	of	deployments	have	a	lot	of	advantages,	such	as	easily
switching	back	to	your	previous	version	of	the	application.	There	are	some
things	that	you	need	to	consider	with	this	deployment	strategy,	however:

Database	migrations	can	become	difficult	with	this	deployment	option
because	you	need	to	consider	in-flight	transactions	and	schema	update
compatibility.

There	is	the	risk	of	accidental	deletion	of	both	environments.

You	need	extra	capacity	for	both	environments.

There	are	coordination	issues	for	hybrid	deployments	in	which	legacy
apps	can’t	handle	the	deployment.

Figure	5-2	depicts	a	blue/green	deployment.

Figure	5-2.	A	blue/green	deployment

Canary	deployments	are	very	similar	to	blue/green	deployments,	but	they	give
you	much	more	control	over	shifting	traffic	to	the	new	release.	Most	modern
ingress	implementations	will	give	you	the	ability	to	release	a	percentage	of
traffic	to	a	new	release,	but	you	can	also	implement	a	service	mesh	technology,
like	Istio,	Linkerd,	or	HashiCorp	Consul,	which	give	you	a	number	of	features
that	help	implement	this	deployment	strategy.

Canary	deployments	allow	you	to	test	new	features	for	only	a	subset	of	users.
For	example,	you	might	roll	out	a	new	version	of	an	application	and	only	want	to
test	the	deployment	for	10%	of	your	user	base.	This	allows	you	to	reduce	the	risk
of	a	bad	deployment	or	broken	features	to	a	much	smaller	subset	of	users.	If
there	are	no	errors	with	the	deployment	or	new	features,	you	can	begin	shifting	a
greater	percentage	of	traffic	to	the	new	version	of	the	application.	There	are	also
some	more	advanced	techniques	that	you	can	use	with	canary	deployments	in
which	you	release	to	only	a	specific	region	of	users	or	just	target	only	users	with
a	specific	profile.	These	types	of	releases	are	often	referred	to	as	A/B	or	dark
releases	because	users	are	unaware	they	are	testing	new	feature	deployments.

With	canary	deployments,	you	have	some	of	the	same	considerations	that	you
have	with	blue/green	deployments,	but	there	are	some	additional	considerations
as	well.	You	must	have:

The	ability	to	shift	traffic	to	a	percentage	of	users

A	firm	knowledge	of	steady	state	to	compare	against	a	new	release

Metrics	to	understand	whether	the	new	release	is	in	a	“good”	or	“bad”
state

Figure	5-3	provides	an	example	of	a	canary	deployment.

Figure	5-3.	A	canary	deployment

NOTE
Canary	releases	also	suffer	from	having	multiple	versions	of	the	application	running	at	the
same	time.	Your	database	schema	needs	to	support	both	versions	of	the	application.	When
using	these	strategies,	you’ll	need	to	really	focus	on	how	to	handle	dependent	services	and
having	multiple	versions	running.	This	includes	having	strong	API	contracts	and	ensuring	that
your	data	services	support	the	multiple	versions	you	have	deployed	at	the	same	time.

Testing	in	Production
Testing	in	production	helps	you	to	build	confidence	in	the	resiliency,	scalability,
and	UX	of	your	application.	This	comes	with	the	caveat	that	testing	in
production	doesn’t	come	without	challenges	and	risk,	but	it’s	worth	the	effort	to
ensure	reliability	in	your	systems.	There	are	important	aspects	you	need	to
address	up	front	when	embarking	on	the	implementation.	You	need	to	ensure
that	you	have	an	in-depth	observability	strategy	in	place,	in	which	you	have	the
ability	to	identify	the	effects	of	testing	in	production.	Without	being	able	to
observe	metrics	that	affect	the	end	users’	experience	of	your	applications,	you
won’t	have	a	clear	indication	of	what	to	focus	on	when	trying	to	improve	the
resiliency	of	your	system.	You	also	need	a	high	degree	of	automation	in	place	to
be	able	to	automatically	recover	from	failures	that	you	inject	into	your	systems.

There	are	many	tools	that	you’ll	need	to	implement	to	reduce	risk	and	effectively
test	your	systems	when	they’re	in	production.	Some	of	the	tools	we	have	already
discussed	in	this	chapter,	but	there	are	a	few	new	ones,	like	distributed	tracing,
instrumentation,	chaos	engineering,	and	traffic	shadowing.	To	recap,	here	are	the
tools	we	have	already	mentioned:

Canary	deployments

A/B	testing

Traffic	shifting

Feature	flags

Chaos	engineering	was	developed	by	Netflix.	It	is	the	practice	of	deploying
experiments	into	live	production	systems	to	discover	weaknesses	within	those
systems.	Chaos	engineering	allows	you	to	learn	about	the	behavior	of	your
system	by	observing	it	during	a	controlled	experiment.	Following	are	the	steps
that	you	want	to	implement	before	doing	a	“game-day”	experiment:

1.	 Build	a	hypothesis	and	learn	about	your	steady	state.

2.	 Have	a	varying	degree	of	real-world	events	that	can	affect	the	system.

3.	 Build	a	control	group	and	experiment	to	compare	to	steady	state.

4.	 Perform	experiments	to	form	the	hypothesis.

It’s	extremely	important	that	when	you’re	running	experiments,	you	minimize
the	“blast	radius”	to	ensure	that	the	issues	that	might	arise	are	minimal.	You’ll
also	want	to	ensure	that	when	you’re	building	experiments,	you	focus	on
automating	them,	given	that	running	experiments	can	be	labor	intensive.

By	this	point,	you	might	be	asking,	“Why	wouldn’t	I	just	test	in	staging?”	We
find	there	are	some	inherent	problems	when	testing	in	staging,	such	as	the
following:

Nonidentical	deployment	of	resources.

Configuration	drift	from	production.

Traffic	and	user	behavior	tend	to	be	generated	synthetically.

The	number	of	requests	generated	don’t	mimic	a	real	workload.

Lack	of	monitoring	implemented	in	staging.

The	data	services	deployed	contain	differing	data	and	load	than	in
production.

We	can’t	stress	this	enough:	ensure	that	you	have	solid	confidence	in	the
monitoring	you	have	in	place	for	production,	because	this	practice	tends	to	fail
users	who	don’t	have	adequate	observability	of	their	production	systems.	Also,
starting	with	smaller	experiments	to	first	learn	about	your	experiments	and	their
effects	will	help	build	confidence.

Setting	Up	a	Pipeline	and	Performing	a	Chaos
Experiment
The	first	step	in	the	process	is	to	get	a	GitHub	repository	forked	so	that	you	can
have	your	own	repository	to	use	through	the	chapter.	You	will	need	to	use	the
GitHub	interface	to	fork	the	repository.

https://oreil.ly/TtJfd

Setting	Up	CI
Now	that	you	have	learned	about	CI,	you	will	set	up	a	build	of	the	code	that	we
cloned	previously.

For	this	example,	we	use	the	hosted	drone.io.	You’ll	need	to	sign	up	for	a	free
account.	Log	in	with	your	GitHub	credentials	(this	registers	your	repositories	in
Drone	and	allows	you	to	synchronize	the	repositories).	After	you’re	logged	in	to
Drone,	select	Activate	on	your	forked	repository.	The	first	thing	that	you	need	to
do	is	add	some	secrets	to	your	settings	so	that	you	can	push	the	app	to	your
Docker	Hub	registry	and	also	deploy	the	app	to	your	Kubernetes	cluster.

Under	your	repository	in	Drone,	click	Settings	and	add	the	following	secrets	(see
Figure	5-4):

docker_username

docker_password

kubernetes_server

kubernetes_cert

kubernetes_token

The	Docker	username	and	password	will	be	whatever	you	used	to	register	on
Docker	Hub.	The	following	steps	show	you	how	to	create	a	Kubernetes	service
account	and	certificate	and	retrieve	the	token.

For	the	Kubernetes	server,	you	will	need	a	publicly	available	Kubernetes	API
endpoint.

https://cloud.drone.io

Figure	5-4.	Drone	secrets	configuration

NOTE
You	will	need	cluster-admin	privileges	on	your	Kubernetes	cluster	to	perform	the	steps	in	this
section.

You	can	retrieve	your	API	endpoint	by	using	the	following	command:

kubectl cluster-info

You	should	see	something	like	the	following:	Kubernetes	master	is	running	at
https://kbp.centralus.azmk8s.io:443.	You’ll	store	this	in	the	kubernetes_server
secret.

Now	let’s	create	a	service	account	that	Drone	will	use	to	connect	to	the	cluster.
Use	the	following	command	to	create	the	serviceaccount:

kubectl create serviceaccount drone

https://kbp.centralus.azmk8s.io:443

Now	use	the	following	command	to	create	a	clusterrolebinding	for	the
serviceaccount:

kubectl create clusterrolebinding drone-admin \
 --clusterrole=cluster-admin \
 --serviceaccount=default:drone

Next,	retrieve	your	serviceaccount	token:

TOKENNAME=`kubectl -n default get serviceaccount/drone -o
jsonpath='{.secrets[0].name}'`
TOKEN=`kubectl -n default get secret $TOKENNAME -o jsonpath='{.data.token}' | base64
-d`
echo $TOKEN

You’ll	want	to	store	the	output	of	the	token	in	the	kubernetes_token	secret.

You	will	also	need	the	user	certificate	to	authenticate	to	the	cluster,	so	use	the
following	command	and	paste	the	ca.crt	for	the	kubernetes_cert	secret:

kubectl get secret $TOKENNAME -o yaml | grep 'ca.crt:'

Now,	build	your	app	in	a	Drone	pipeline	and	then	push	it	to	Docker	Hub.

The	first	step	is	the	build	step,	which	will	build	your	Node.js	frontend.	Drone
utilizes	container	images	to	run	its	steps,	which	gives	you	a	lot	of	flexibility	in
what	you	can	do	with	it.	For	the	build	step,	use	a	Node.js	image	from	Docker
Hub:

pipeline:
 build:
 image: node
 commands:
 - cd frontend
 - npm i redis --save

When	the	build	completes,	you’ll	want	to	test	it,	so	we	include	a	test	step,	which
will	run	npm	against	the	newly	built	app:

test:
 image: node

 commands:
 - cd frontend
 - npm i redis --save
 - npm test

Now	that	you	have	successfully	built	and	tested	your	app,	you	next	move	on	to	a
publish	step	to	create	a	Docker	image	of	the	app	and	push	it	to	Docker	Hub.

In	the	.drone.yml	file,	make	the	following	code	change:

repo: <your-registry>/frontend

publish:
 image: plugins/docker
 dockerfile: ./frontend/Dockerfile
 context: ./frontend
 repo: dstrebel/frontend
 tags: [latest, v2]
 secrets: [docker_username, docker_password]

After	the	Docker	build	step	finishes,	it	will	push	the	image	to	your	Docker
registry.

Setting	Up	CD
For	the	deployment	step	in	your	pipeline,	you	will	push	your	application	to	your
Kubernetes	cluster.	You	will	use	the	deployment	manifest	that	is	under	the
frontend	app	folder	in	your	repository:

kubectl:
 image: dstrebel/drone-kubectl-helm
 secrets: [kubernetes_server, kubernetes_cert, kubernetes_token]
 kubectl: "apply -f ./frontend/deployment.yaml"

After	the	pipeline	finishes	its	deployment,	you	will	see	the	pods	running	in	your
cluster.	Run	the	following	command	to	confirm	that	the	pods	are	running:

kubectl get pods

You	can	also	add	a	test	step	that	will	retrieve	the	status	of	the	deployment	by
adding	the	following	step	in	your	Drone	pipeline:

 test-deployment:
 image: dstrebel/drone-kubectl-helm
 secrets: [kubernetes_server, kubernetes_cert, kubernetes_token]
 kubectl: "get deployment frontend"

Performing	a	Rolling	Upgrade
Let’s	demonstrate	a	rolling	upgrade	by	changing	a	line	in	the	frontend	code.	In
the	server.js	file,	change	the	following	line	and	then	commit	the	change:

console.log('api server is running.');

You	will	see	the	deployment	rolling	out	and	rolling	updates	happening	to	the
existing	pods.	After	the	rolling	update	finishes,	you’ll	have	the	new	version	of
the	application	deployed.

A	Simple	Chaos	Experiment
There	are	a	variety	of	tools	in	the	Kubernetes	ecosystem	that	can	help	with
performing	chaos	experiments	in	your	environment.	They	range	from
sophisticated	hosted	Chaos	as	a	Service	solutions	to	basic	chaos	experiment
tools	that	kill	pods	in	your	environment.	Following	are	some	of	the	tools	with
which	we’ve	seen	users	have	success:

Gremlin

Hosted	chaos	service	that	provides	advanced	features	for	running	chaos
experiments

PowerfulSeal

Open	source	project	that	provides	advanced	chaos	scenarios

Chaos	Toolkit

Open	source	project	with	a	mission	to	provide	a	free,	open,	and	community-
driven	toolkit	and	API	to	all	the	various	forms	of	chaos	engineering	tools

KubeMonkey

Open	source	tool	that	provides	basic	resiliency	testing	for	pods	in	your
cluster

Let’s	set	up	a	quick	chaos	experiment	to	test	the	resiliency	of	your	application	by
automatically	terminating	pods.	For	this	experiment,	we’ll	use	Chaos	Toolkit:

pip install -U chaostoolkit

pip install chaostoolkit-kubernetes

export FRONTEND_URL="http://$(kubectl get svc frontend -o jsonpath="
{.status.loadBalancer.ingress[*].ip}"):8080/api/"

chaos run experiment.json

Best	Practices	for	CI/CD
Your	CI/CD	pipeline	won’t	be	perfect	on	day	one,	but	consider	some	of	the
following	best	practices	to	iteratively	improve	on	the	pipeline:

With	CI,	focus	on	automation	and	providing	quick	builds.	Optimizing
the	build	speed	will	provide	developers	quick	feedback	if	their	changes
have	broken	the	build.

Focus	on	providing	reliable	tests	in	your	pipeline.	This	will	give
developers	rapid	feedback	on	issues	with	their	code.	The	faster	the
feedback	loop	to	developers,	the	more	productive	they’ll	become	in
their	workflow.

When	deciding	on	CI/CD	tools,	ensure	that	the	tools	allow	you	to	define
the	pipeline	as	code.	This	will	allow	you	to	version-control	the	pipeline
with	your	application	code.

Ensure	that	you	optimize	your	images	so	that	you	can	reduce	the	size	of
the	image	and	also	reduce	the	attack	surface	when	running	the	image	in
production.	Multistage	Docker	builds	allow	you	to	remove	packages	not
needed	for	the	application	to	run.	For	example,	you	might	need	Maven
to	build	the	application,	but	you	don’t	need	it	for	the	actual	running
image.

Avoid	using	“latest”	as	an	image	tag,	and	utilize	a	tag	that	can	be
referenced	back	to	the	buildID	or	Git	commit.

If	you	are	new	to	CD,	utilize	Kubernetes	rolling	upgrades	to	start	out.
They	are	easy	to	use	and	will	get	you	comfortable	with	deployment.	As
you	become	more	comfortable	and	confident	with	CD,	look	at	utilizing
blue/green	and	canary	deployment	strategies.

With	CD,	ensure	that	you	test	how	client	connections	and	database
schema	upgrades	are	handled	in	your	application.

Testing	in	production	will	help	you	build	reliability	into	your
application,	and	ensure	that	you	have	good	monitoring	in	place.	With
testing	in	production,	also	start	at	a	small	scale	and	limit	the	blast	radius
of	the	experiment.

Summary
In	this	chapter,	we	discussed	the	stages	of	building	a	CI/CD	pipeline	for	your
applications,	which	let	you	reliably	deliver	software	with	confidence.	CI/CD
pipelines	help	reduce	risk	and	increase	throughput	of	delivering	applications	to
Kubernetes.	We	also	discussed	the	different	deployment	strategies	that	can	be
utilized	for	delivering	applications.

Chapter	6.	Versioning,	Releases,
and	Rollouts

One	of	the	main	complaints	of	traditional	monolithic	applications	is	that	over
time	they	begin	to	grow	too	large	and	unwieldy	to	properly	upgrade,	version,	or
modify	at	the	speed	the	business	requires.	Many	can	argue	that	this	is	one	of	the
main	critical	factors	that	led	to	more	Agile	development	practices	and	the	advent
of	microservice	architectures.	Being	able	to	quickly	iterate	on	new	code,	solve
new	problems,	or	fix	hidden	problems	before	they	become	major	issues,	as	well
as	the	promise	of	zero-downtime	upgrades,	are	all	goals	that	development	teams
strive	for	in	this	ever-changing	internet	economy	world.	Practically,	these	issues
can	be	solved	with	proper	processes	and	procedures	in	place,	no	matter	the	type
of	system,	but	this	usually	comes	at	a	much	higher	cost	of	both	technology	and
human	capital	to	maintain.

The	adoption	of	containers	as	the	runtime	for	application	code	allows	for	the
isolation	and	composability	that	was	helpful	in	designing	systems	that	could	get
close,	but	still	required	a	high	level	of	human	automation	or	system	management
to	maintain	at	a	dependable	level	over	large	system	footprints.	As	the	system
grew,	more	brittleness	was	introduced,	and	systems	engineers	began	to	build
complex	automation	processes	to	deliver	on	complex	release,	upgrade,	and
failure	detection	mechanisms.	Service	orchestrators	such	as	Apache	Mesos,
HashiCorp	Nomad,	and	even	specialized	container-based	orchestrators	such	as
Kubernetes	and	Docker	Swarm	evolved	this	into	more	primitive	components	to
their	runtime.	Now,	systems	engineers	can	solve	more	complex	system	problems
as	the	table	stakes	have	been	elevated	to	include	the	versioning,	release,	and
deployment	of	applications	into	the	system.

Versioning
This	section	is	not	meant	to	be	a	primer	on	software	versioning	and	the	history
behind	it;	there	are	countless	articles	and	computer	science	course	books	on	the
subject.	The	main	thing	is	to	pick	a	pattern	and	stick	with	it.	The	majority	of

software	companies	and	developers	have	agreed	that	some	form	of	semantic
versioning	is	the	most	useful,	especially	in	a	microservice	architecture	in	which
a	team	that	writes	a	certain	microservice	will	depend	on	the	API	compatibility	of
other	microservices	that	make	up	the	system.

For	those	new	to	semantic	versioning,	the	basics	are	that	it	follows	a	three-part
version	number	in	a	pattern	of	major	version,	minor	version,	and	patch,	usually
expressed	in	a	dot	notation	such	as	1(major).2(minor).3(patch).	The	patch
signifies	an	incremental	release	that	includes	a	bug	fix	or	very	minor	change	that
has	no	API	changes.	The	minor	version	signifies	updates	that	might	have	new
API	changes	but	is	backward	compatible	with	the	previous	version.	This	is	a	key
attribute	for	developers	working	with	other	microservices	they	might	not	be
involved	in	developing.	Knowing	that	I	have	my	service	written	to	communicate
with	version	1.4.7	of	another	microservice	that	has	been	recently	upgraded	to
1.4.8	should	signify	that	I	might	not	need	to	change	my	code	unless	I	want	to
take	advantage	of	any	new	API	features.	The	major	version	is	a	breaking	change
increment	to	the	code.	In	most	cases,	the	API	is	no	longer	compatible	between
major	versions	of	the	same	code.	There	are	many	slight	modifications	to	this
process,	including	a	“4”	version	to	indicate	the	stage	of	the	software	in	its
development	life	cycle,	such	as	1.4.7.0	for	alpha	code,	and	1.4.7.3	for	release.
The	most	important	thing	is	that	there	is	consistency	across	the	system.

Releases
In	truth,	Kubernetes	does	not	really	have	a	release	controller,	so	there	is	no
native	concept	of	a	release.	This	is	usually	added	to	a	Deployment
metadata.labels	specification	and/or	in	the
pod.spec.template.metadata.label	specification.	When	to	include	either	is
very	important,	and	based	on	how	CD	is	used	to	update	changes	to	deployments,
it	can	have	varied	effects.	When	Helm	for	Kubernetes	was	introduced,	one	of	its
main	concepts	was	the	notion	of	a	release	to	differentiate	the	running	instance	of
the	same	Helm	chart	in	a	cluster.	This	concept	is	easily	reproducible	without
Helm;	however,	Helm	natively	keeps	track	of	releases	and	their	history,	so	many
CD	tools	integrate	Helm	into	their	pipelines	to	be	the	actual	release	service.
Again,	the	key	here	is	consistency	in	how	versioning	is	used	and	where	it	is
surfaced	in	the	system	state	of	the	cluster.

Release	names	can	be	quite	useful	if	there	is	institutional	agreement	as	to	the
definition	of	certain	names.	Often	labels	such	as	stable	or	canary	are	used,
which	helps	to	also	give	some	kind	of	operational	control	when	tools	such	as
service	meshes	are	added	to	make	fine-grained	routing	decisions.	Large
organizations	that	drive	numerous	changes	for	different	audiences	will	also	adopt
a	ring	architecture	that	can	also	be	denoted	such	as	ring-0,	ring-1,	and	so	on.

This	topic	requires	a	little	side	trip	into	the	specifics	of	labels	in	the	Kubernetes
declarative	model.	Labels	themselves	are	very	much	free	form	and	can	be	any
key/value	pair	that	follows	the	syntactical	rules	of	the	API.	The	key	is	not	really
the	content	but	how	each	controller	handles	labels,	changes	to	labels,	and
selector	matching	of	labels.	Jobs,	Deployments,	ReplicaSets,	and	DaemonSets
support	selector-based	matching	of	pods	via	labels	through	direct	mapping	or
set-based	expressions.	It	is	important	to	understand	that	label	selectors	are
immutable	after	they	are	created,	which	means	if	you	add	a	new	selector	and	the
pod’s	labels	have	a	corresponding	match,	a	new	ReplicaSet	is	made,	not	an
upgrade	to	an	existing	ReplicaSet.	This	becomes	very	important	to	understand
when	dealing	with	rollouts,	which	we	discuss	next.

Rollouts
Prior	to	the	Deployment	controller	being	introduced	in	Kubernetes,	the	only
mechanism	that	existed	to	control	how	applications	were	rolled	out	by	the
Kubernetes	controller	process	was	using	the	command-line	interface	(CLI)
command	kubectl rolling-update	on	the	specific	replicaController	that
was	to	be	updated.	This	was	very	difficult	for	declarative	CD	models	because
this	was	not	part	of	the	state	of	the	original	manifest.	One	had	to	carefully	ensure
that	manifests	were	updated	correctly,	versioned	properly	so	as	to	not
accidentally	roll	the	system	back,	and	archived	when	no	longer	needed.	The
Deployment	controller	added	the	ability	to	automate	this	update	process	using	a
specific	strategy	and	then	allowing	the	system	to	read	the	declarative	new	state
based	on	changes	to	the	spec.template	of	the	deployment.	This	last	fact	is
often	misunderstood	by	early	users	of	Kubernetes	and	causes	frustration	when
they	change	a	label	in	the	Deployment	metadata	fields,	reapply	a	manifest,	and
no	update	has	been	triggered.	The	Deployment	controller	is	able	to	determine

changes	to	the	specification	and	will	take	action	to	update	the	Deployment	based
on	a	strategy	that	is	defined	by	the	specification.	Kubernetes	deployments
support	two	strategies,	rollingUpdate	and	recreate,	the	former	being	the
default.

If	a	rolling	update	is	specified,	the	deployment	will	create	a	new	ReplicaSet	to
scale	to	the	number	of	required	replicas,	and	the	old	ReplicaSet	will	scale	down
to	zero	based	on	specific	values	for	maxUnavailble	and	maxSurge.	In	essence,
those	two	values	will	prevent	Kubernetes	from	removing	older	pods	until	a
sufficient	number	of	newer	pods	have	come	online,	and	will	not	create	new	pods
until	a	certain	number	of	old	pods	have	been	removed.	The	nice	thing	is	that	the
Deployment	controller	will	keep	a	history	of	the	updates,	and	through	the	CLI,
you	can	roll	back	deployments	to	previous	versions.

The	recreate	strategy	is	a	valid	strategy	for	certain	workloads	that	can	handle	a
complete	outage	of	the	pods	in	a	ReplicaSet	with	little	to	no	degradation	of
service.	In	this	strategy	the	Deployment	controller	will	create	a	new	ReplicaSet
with	the	new	configuration	and	will	delete	the	prior	ReplicaSet	before	bringing
the	new	pods	online.	Services	that	sit	behind	queue-based	systems	are	an
example	of	a	service	that	could	handle	this	type	of	disruption,	because	messages
will	queue	while	waiting	for	the	new	pods	to	come	online,	and	message
processing	will	resume	as	soon	as	the	new	pods	come	online.

Putting	It	All	Together
Within	a	single	service	deployment,	a	few	key	areas	are	affected	by	versioning,
release,	and	rollout	management.	Let’s	examine	an	example	deployment	and
then	break	down	the	specific	areas	of	interest	as	they	relate	to	best	practices:

Web Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
 name: gb-web-deploy
 labels:
 app: guest-book
 appver: 1.6.9
 environment: production
 release: guest-book-stable

 release number: 34e57f01
spec:
 strategy:
 type: rollingUpdate
 rollingUpdate:
 maxUnavailbale: 3
 maxSurge: 2
 selector:
 matchLabels:
 app: gb-web
 ver: 1.5.8
 matchExpressions:
 - {key: environment, operator: In, values: [production]}
 template:
 metadata:
 labels:
 app: gb-web
 ver: 1.5.8
 environment: production
 spec:
 containers:
 - name: gb-web-cont
 image: evillgenius/gb-web:v1.5.5
 env:
 - name: GB_DB_HOST
 value: gb-mysql
 - name: GB_DB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password
 resources:
 limits:
 memory: "128Mi"
 cpu: "500m"
 ports:
 - containerPort: 80

DB Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
 name: gb-mysql
 labels:
 app: guest-book
 appver: 1.6.9
 environment: production
 release: guest-book-stable
 release number: 34e57f01

spec:
 selector:
 matchLabels:
 app: gb-db
 tier: backend
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: gb-db
 tier: backend
 ver: 1.5.9
 environment: production
 spec:
 containers:
 - image: mysql:5.6
 name: mysql
 env:
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-persistent-storage
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-persistent-storage
 persistentVolumeClaim:
 claimName: mysql-pv-claim

DB Backup Job
apiVersion: batch/v1
kind: Job
metadata:
 name: db-backup
 labels:
 app: guest-book
 appver: 1.6.9
 environment: production
 release: guest-book-stable
 release number: 34e57f01
 annotations:
 "helm.sh/hook": pre-upgrade
 "helm.sh/hook": pre-delete

 "helm.sh/hook": pre-rollback
 "helm.sh/hook-delete-policy": hook-succeeded
spec:
 template:
 metadata:
 labels:
 app: gb-db-backup
 tier: backend
 ver: 1.6.1
 environment: production
 spec:
 containers:
 - name: mysqldump
 image: evillgenius/mysqldump:v1
 env:
 - name: DB_NAME
 value: gbdb1
 - name: GB_DB_HOST
 value: gb-mysql
 - name: GB_DB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password
 volumeMounts:
 - mountPath: /mysqldump
 name: mysqldump
 volumes:
 - name: mysqldump
 hostPath:
 path: /home/bck/mysqldump
 restartPolicy: Never
 backoffLimit: 3

Upon	first	inspection,	things	might	look	a	little	off.	How	can	a	deployment	have
a	version	tag	and	the	container	image	the	deployment	uses	have	a	different
version	tag?	What	will	happen	if	one	changes	and	the	other	does	not?	What	does
release	mean	in	this	example,	and	what	effect	on	the	system	will	that	have	if	it
changes?	If	a	certain	label	is	changed,	when	will	it	trigger	an	update	to	my
deployment?	We	can	find	the	answers	to	these	questions	by	looking	at	some	of
the	best	practices	for	versioning,	releases,	and	rollouts.

Best	Practices	for	Versioning,	Releases,	and	Rollouts
Effective	CI/CD	and	the	ability	to	offer	reduced	or	zero	downtime	deployments

are	both	dependent	on	using	consistent	practices	for	versioning	and	release
management.	The	best	practices	noted	below	can	help	to	define	consistent
parameters	that	can	assist	DevOps	teams	in	delivering	smooth	software
deployments:

Use	semantic	versioning	for	the	application	in	its	entirety	that	differs
from	the	version	of	the	containers	and	the	version	of	the	pods
deployment	that	make	up	the	entire	application.	This	allows	for
independent	life	cycles	of	the	containers	that	make	up	the	application
and	the	application	as	a	whole.	This	can	become	quite	confusing	at	first,
but	if	a	principled	hierarchical	approach	is	taken	to	when	one	changes
the	other,	you	can	easily	track	it.	In	the	previous	example,	the	container
itself	is	currently	on	v1.5.5;	however,	the	pod	specification	is	a	1.5.8,
which	could	mean	that	changes	were	made	to	the	pod	specification,
such	as	new	ConfigMaps,	additional	secrets,	or	updated	replica	values,
but	the	specific	container	used	has	not	changed	its	version.	The
application	itself,	the	entire	guestbook	application	and	all	of	its	services,
is	at	1.6.9,	which	could	mean	that	operations	made	changes	along	the
way	that	were	beyond	just	this	specific	service,	such	as	other	services
that	make	up	the	entire	application.

Use	a	release	and	release	version/number	label	in	your	deployment
metadata	to	track	releases	from	CI/CD	pipelines.	The	release	name	and
release	number	should	coordinate	with	the	actual	release	in	the	CI/CD
tool	records.	This	allows	for	traceability	through	the	CI/CD	process	into
the	cluster	and	allows	for	easier	rollback	identification.	In	the	previous
example,	the	release	number	comes	directly	from	the	release	ID	of	the
CD	pipeline	that	created	the	manifest.

If	Helm	is	being	used	to	package	services	for	deployment	into
Kubernetes,	take	special	care	to	bundle	together	those	services	that	need
to	be	rolled	back	or	upgraded	together	into	the	same	Helm	chart.	Helm
allows	for	easy	rollback	of	all	components	of	the	application	to	bring
the	state	back	to	what	it	was	before	the	upgrade.	Because	Helm	actually
processes	the	templates	and	all	of	the	Helm	directives	before	passing	a
flattened	YAML	configuration,	the	use	of	life	cycle	hooks	allows	for
proper	ordering	of	the	application	of	specific	templates.	Operators	can

use	proper	Helm	life	cycle	hooks	to	ensure	that	upgrades	and	rollback
will	happen	correctly.	The	previous	example	for	the	Job	specification
uses	Helm	life	cycle	hooks	to	ensure	that	the	template	runs	a	backup	of
the	database	before	a	rollback,	upgrade,	or	delete	of	the	Helm	release.	It
also	ensures	that	the	Job	is	deleted	after	the	job	is	run	successfully,
which,	until	the	TTL	Controller	comes	out	of	alpha	in	Kubernetes,
would	require	manual	cleanup.

Agree	on	a	release	nomenclature	that	makes	sense	for	the	operational
tempo	of	the	organization.	Simple	stable,	canary,	and	alpha	states	are
quite	adequate	for	most	situations.

Summary
Kubernetes	has	allowed	for	more	complex,	Agile	development	processes	to	be
adopted	within	companies	large	and	small.	The	ability	to	automate	much	of	the
complex	processes	that	would	usually	require	large	amounts	of	human	and
technical	capital	has	now	been	democratized	to	allow	for	even	startups	to	take
advantage	of	this	cloud	pattern	with	relative	ease.	The	true	declarative	nature	of
Kubernetes	really	shines	when	planning	the	proper	use	of	labels	and	using	native
Kubernetes	controller	capabilities.	By	properly	identifying	operational	and
development	states	within	the	declarative	properties	of	the	applications	deployed
into	Kubernetes,	organizations	can	tie	in	tooling	and	automation	to	more	easily
manage	the	complex	processes	of	upgrades,	rollouts,	and	rollbacks	of
capabilities.

Chapter	7.	Worldwide	Application
Distribution	and	Staging

So	far	throughout	this	book,	we	have	seen	a	number	of	different	practices	for
building,	developing,	and	deploying	applications,	but	there	is	a	whole	different
set	of	concerns	when	it	comes	to	deploying	and	managing	an	application	with	a
worldwide	footprint.

There	are	many	different	reasons	why	an	application	might	need	to	scale	to	a
global	deployment.	The	first	and	most	obvious	one	is	simply	scale.	It	might	be
that	your	application	is	so	successful	or	mission	critical	that	it	simply	needs	to	be
deployed	around	the	world	in	order	to	provide	the	capacity	needed	for	its	users.
Examples	of	such	applications	include	a	worldwide	API	gateway	for	a	public
cloud	provider,	a	large-scale	IoT	product	with	a	worldwide	footprint,	a	highly
successful	social	network,	and	more.

Although	there	are	relatively	few	of	us	who	will	build	out	systems	that	require
worldwide	scale,	many	more	applications	require	a	worldwide	footprint	for
latency.	Even	with	containers	and	Kubernetes	there	is	no	getting	around	the
speed	of	light,	and	thus	to	minimize	latency	to	our	applications,	it	is	sometimes
necessary	to	distribute	our	applications	around	the	world	to	minimize	the
distance	to	our	users.

Finally,	an	even	more	common	reason	for	global	distribution	is	locality.	Either
for	reasons	of	bandwidth	(e.g.,	a	remote	sensing	platform)	or	data	privacy
(geographic	restrictions),	it	is	sometimes	necessary	to	deploy	an	application	in
specific	locations	for	the	application	to	be	possible	or	successful.

In	all	of	these	cases,	your	application	is	no	longer	simply	present	in	a	small
handful	of	production	clusters.	Instead	it	is	distributed	across	tens	to	hundreds	of
different	geographic	locations,	and	the	management	of	these	locations,	as	well	as
the	demands	of	rolling	out	a	globally	reliable	service,	is	a	significant	challenge.
This	chapter	covers	approaches	and	practices	for	doing	this	successfully.

Distributing	Your	Image
Before	you	can	even	consider	running	your	application	around	the	world,	you
need	to	have	that	image	available	in	clusters	located	around	the	globe.	The	first
thing	to	consider	is	whether	your	image	registry	has	automatic	geo-replication.
Many	image	registries	provided	by	cloud	providers	will	automatically	distribute
your	image	around	the	world	and	resolve	a	request	for	that	image	to	the	storage
location	nearest	to	the	cluster	from	which	you	are	pulling	the	image.	Many
clouds	enable	you	to	decide	where	you	want	to	replicate	the	image;	for	example,
you	might	know	of	locations	where	you	are	not	going	to	be	present.	An	example
of	such	a	registry	is	the	Microsoft	Azure	container	registry,	but	others	provide
similar	services.	If	you	use	a	cloud-provided	registry	that	supports	geo-
replication,	distributing	your	image	around	the	world	is	simple.	You	push	the
image	into	the	registry,	select	the	regions	for	geo-distribution,	and	the	registry
takes	care	of	the	rest.

If	you	are	not	using	a	cloud	registry,	or	your	provider	does	not	support	automatic
geo-distribution	of	images,	you	will	need	to	solve	that	problem	yourself.	One
option	is	to	use	a	registry	located	in	a	specific	location.	There	are	several
concerns	about	such	an	approach.	Image	pull	latency	often	dictates	the	speed
with	which	you	can	launch	a	container	in	a	cluster.	This	in	turn	can	determine
how	quickly	you	can	respond	to	a	machine	failure,	given	that	generally	in	the
case	of	a	machine	failure,	you	will	need	to	pull	the	container	image	down	to	a
new	machine.

Another	concern	about	a	single	registry	is	that	it	can	be	a	single	point	of	failure.
If	the	registry	is	located	in	a	single	region	or	a	single	datacenter,	it’s	possible	that
the	registry	could	go	offline	due	to	a	large-scale	incident	in	that	datacenter.	If
your	registry	goes	offline,	your	CI/CD	pipeline	will	stop	working,	and	you’ll	be
unable	to	deploy	new	code.	This	obviously	has	a	significant	impact	on	both
developer	productivity	and	application	operations.	Additionally,	a	single	registry
can	be	much	more	expensive	because	you	will	be	using	significant	bandwidth
each	time	you	launch	a	new	container,	and	even	though	container	images	are
generally	fairly	small,	the	bandwidth	can	add	up.	Despite	these	negatives,	a
single	registry	solution	can	be	the	appropriate	answer	for	small-scale
applications	running	in	only	a	few	global	regions.	It	certainly	is	simpler	to	set	up
than	full-scale	image	replication.

https://acr.io

If	you	cannot	use	cloud-provided	geo-replication	and	you	need	to	replicate	your
image,	you	are	on	your	own	to	craft	a	solution	for	image	replication.	To
implement	such	a	service,	you	have	two	options.	The	first	is	to	use	geographic
names	for	each	image	registry	(e.g.,	us.my-registry.io,	eu.my-registry.io,
etc.).	The	advantage	of	this	approach	is	that	it	is	simple	to	set	up	and	manage.
Each	registry	is	entirely	independent,	and	you	can	simply	push	to	all	registries	at
the	end	of	your	CI/CD	pipeline.	The	downside	is	that	each	cluster	will	require	a
slightly	different	configuration	to	pull	the	image	from	the	nearest	geographic
location.	However,	given	that	you	likely	will	have	geographic	differences	in
your	application	configurations	anyway,	this	downside	is	relatively	easy	to
manage	and	likely	already	present	in	your	environment.

Parameterizing	Your	Deployment
When	you	have	replicated	your	image	everywhere,	you	need	to	parameterize
your	deployments	for	different	global	locations.	Whenever	you	are	deploying	to
a	variety	of	different	regions,	there	are	bound	to	be	differences	in	the
configuration	of	your	application	in	the	different	regions.	For	example,	if	you
don’t	have	a	geo-replicated	registry,	you	might	need	to	tweak	the	image	name
for	different	regions,	but	even	if	you	have	a	geo-replicated	image,	it’s	likely	that
different	geographic	locations	will	present	different	load	on	your	application,
and	thus	the	size	(e.g.,	the	number	of	replicas)	as	well	as	other	configuration	can
be	different	between	regions.	Managing	this	complexity	in	a	manner	that	doesn’t
incur	undue	toil	is	key	to	successfully	managing	a	worldwide	application.

The	first	thing	to	consider	is	how	to	organize	your	different	configurations	on
disk.	A	common	way	to	achieve	this	is	by	using	a	different	directory	for	each
global	region.	Given	these	directories,	it	might	be	tempting	to	simply	copy	the
same	configurations	into	each	directory,	but	doing	this	is	guaranteed	to	lead	to
drift	and	changes	between	configurations	in	which	some	regions	are	modified
and	other	regions	are	forgotten.	Instead,	using	a	template-based	approach	is	the
best	idea	so	that	most	of	the	configuration	is	retained	in	a	single	template	that	is
shared	by	all	regions,	and	then	parameters	are	applied	to	that	template	to	produce
the	region-specific	templates.	Helm	is	a	commonly	used	tool	for	this	sort	of
templating	(for	details,	see	Chapter	2).

https://helm.sh

Load-Balancing	Traffic	Around	the	World
Now	that	your	application	is	running	around	the	world,	the	next	step	is	to
determine	how	to	direct	traffic	to	the	application.	In	general,	you	want	to	take
advantage	of	geographic	proximity	to	ensure	low-latency	access	to	your	service.
But	you	also	want	to	failover	across	geographic	regions	in	case	of	an	outage	or
any	other	source	of	service	failure.	Correctly	setting	up	the	balancing	of	traffic	to
your	various	regional	deployments	is	key	to	the	establishment	of	both	a
performant	and	reliable	system.

Let’s	begin	with	the	assumption	that	you	have	a	single	hostname	that	you	want
to	serve	as	your	service.	For	example,	myapp.myco.com.	One	initial	decision	that
you	need	to	make	is	whether	you	want	to	use	the	Domain	Name	System	(DNS)
protocol	to	implement	load	balancing	across	your	regional	endpoints.	If	you	use
DNS	for	load	balancing,	the	IP	address	that	is	returned	when	a	user	makes	a
DNS	query	to	myapp.myco.com	is	based	on	both	the	location	of	the	user
accessing	your	service	as	well	as	the	current	availability	of	your	service.

Reliably	Rolling	Out	Software	Around	the	World
After	you	have	templatized	your	application	so	that	you	have	proper
configurations	for	each	region,	the	next	important	problem	is	how	to	deploy
these	configurations	around	the	world.	It	might	be	tempting	to	simultaneously
deploy	your	application	worldwide	so	that	you	can	efficiently	and	quickly	iterate
your	application,	but	this,	although	Agile,	is	an	approach	that	can	easily	leave
you	with	a	global	outage.	Instead,	for	most	production	applications,	a	more
carefully	staged	approach	to	rolling	out	your	software	around	the	world	is	more
appropriate.	When	combined	with	things	like	global	load	balancing,	these
approaches	can	maintain	high	availability	even	in	the	face	of	major	application
failures.

Overall,	when	approaching	the	problem	of	a	global	rollout,	the	goal	is	to	roll	out
software	as	quickly	as	possible,	while	simultaneously	detecting	issues	quickly—
ideally	before	they	affect	any	other	users.	Let’s	assume	that	by	the	time	you	are
performing	a	global	rollout,	your	application	has	already	passed	basic	functional
and	load	testing.	Before	a	particular	image	(or	images)	is	certified	for	a	global
rollout,	it	should	have	gone	through	enough	testing	that	you	believe	the

application	is	operating	correctly.	It	iss	important	to	note	that	this	does	not	mean
that	your	application	is	operating	correctly.	Though	testing	catches	many
problems,	in	the	real	world,	application	problems	are	often	first	noticed	when
they	are	rolled	out	to	production	traffic.	This	is	because	the	true	nature	of
production	traffic	is	often	difficult	to	simulate	with	perfect	fidelity.	For	example,
you	might	test	with	only	English	language	inputs,	whereas	in	the	real	world,	you
see	input	from	a	variety	of	languages.	Or	your	set	of	test	inputs	is	not
comprehensive	for	the	real-world	data	your	application	ingests.	Of	course,	any
time	that	you	do	see	a	failure	in	production	that	wasn’t	caught	by	testing,	it	is	a
strong	indicator	that	you	need	to	extend	and	expand	your	testing.	Nonetheless,	it
is	still	true	that	many	problems	are	caught	during	a	production	rollout.

With	this	in	mind,	each	region	that	you	roll	out	to	is	an	opportunity	to	discover	a
new	problem.	And,	because	the	region	is	a	production	region,	it	is	also	a
potential	outage	to	which	you	will	need	to	react.	These	factors	combine	to	set	the
stage	for	how	you	should	approach	regional	rollouts.

Pre-Rollout	Validation
Before	you	even	consider	rolling	out	a	particular	version	of	your	software
around	the	world,	it’s	critically	important	to	validate	that	software	in	some	sort
of	synthetic	testing	environment.	If	you	have	your	CD	pipeline	set	up	correctly,
all	code	prior	to	a	particular	release	build	will	have	undergone	some	form	of	unit
testing,	and	possibly	limited	integration	testing.	However,	even	with	this	testing
in	place,	it’s	important	to	consider	two	other	sorts	of	tests	for	a	release	before	it
begins	its	journey	through	the	release	pipeline.	The	first	is	complete	integration
testing.	This	means	that	you	assemble	the	entirety	of	your	stack	into	a	full-scale
deployment	of	your	application	but	without	any	real-world	traffic.	This	complete
stack	generally	will	include	either	a	copy	of	your	production	data	or	simulated
data	on	the	same	size	and	scale	as	your	true	production	data.	If	in	the	real	world,
the	data	in	your	application	is	500	GB,	it’s	critical	that	in	preproduction	testing
your	dataset	is	roughly	the	same	size	(and	possibly	even	literally	the	same
dataset).

Generally	speaking,	this	is	the	most	difficult	part	of	setting	up	a	complete
integration	test	environment.	Often,	production	data	is	really	present	only	in
production,	and	generating	a	synthetic	dataset	of	the	same	size	and	scale	is	quite

difficult.	Because	of	this	complexity,	setting	up	a	realistic	integration	testing
dataset	is	a	great	example	of	a	task	that	it	pays	to	do	early	on	in	the	development
of	an	application.	If	you	set	up	a	synthetic	copy	of	your	dataset	early,	when	the
dataset	itself	is	quite	small,	your	integration	test	data	grows	gradually	at	the
same	pace	as	your	production	data.	This	is	generally	significantly	more
manageable	than	if	you	attempt	to	duplicate	your	production	data	when	you	are
already	at	scale.

Sadly,	many	people	don’t	realize	that	they	need	a	copy	of	their	data	until	they	are
already	at	a	large	scale	and	the	task	is	difficult.	In	such	cases	it	might	be	possible
to	deploy	a	read/write-deflecting	layer	in	front	of	your	production	data	store.
Obviously,	you	don’t	want	your	integration	tests	writing	to	production	data,	but
it	is	often	possible	to	set	up	a	proxy	in	front	of	your	production	data	store	that
reads	from	production	but	stores	writes	in	a	side	table	that	is	also	consulted	on
subsequent	reads.

Regardless	of	how	you	manage	to	set	up	your	integration	testing	environment,
the	goal	is	the	same:	to	validate	that	your	application	behaves	as	expected	when
given	a	series	of	test	inputs	and	interactions.	There	are	a	variety	of	ways	to
define	and	execute	these	tests—from	the	most	manual,	a	worksheet	of	tests	and
human	effort	(not	recommended	because	it	is	fairly	error	prone),	through	tests
that	simulate	browsers	and	user	interactions,	like	clicks	and	so	forth.	In	the
middle	are	tests	that	probe	RESTful	APIs	but	don’t	necessarily	test	the	web	UI
built	on	top	of	those	APIs.	Regardless	of	how	you	define	your	integration	tests,
the	goal	should	be	the	same:	an	automated	test	suite	that	validates	the	correct
behavior	of	your	application	in	response	to	a	complete	set	of	real-world	inputs.
For	simple	applications	it	may	be	possible	to	perform	this	validation	in	premerge
testing,	but	for	most	large-scale	real-world	applications,	a	complete	integration
environment	is	required.

Integration	testing	will	validate	the	correct	operation	of	your	application,	but	you
should	also	load-test	the	application.	It	is	one	thing	to	demonstrate	that	the
application	behaves	correctly,	it	is	quite	another	to	demonstrate	that	it	stands	up
to	real-world	load.	In	any	reasonably	high-scale	system,	a	significant	regression
in	performance—for	example,	a	20%	increase	in	request	latency—has	a
significant	impact	on	the	UX	of	the	application	and,	in	addition	to	frustrating
users,	can	cause	an	application	to	completely	fail.	Thus,	it	is	critical	to	ensure

that	such	performance	regressions	do	not	happen	in	production.

Like	integration	testing,	identifying	the	correct	way	to	load-test	an	application
can	be	a	complex	proposition;	after	all,	it	requires	that	you	generate	a	load
similar	to	production	traffic	but	in	a	synthetic	and	reproduceable	way.	One	of	the
easiest	ways	to	do	this	is	to	simply	replay	the	logs	of	traffic	from	a	real-world
production	system.	Doing	this	can	be	a	great	way	to	perform	a	load-test	whose
characteristics	match	what	your	application	will	experience	when	deployed.
However,	using	replay	isn’t	always	foolproof.	For	example,	if	your	logs	are	old,
and	your	application	or	dataset	has	changed,	it’s	possible	that	the	performance
on	old,	replayed	logs	will	be	different	that	the	performance	on	fresh	traffic.
Additionally,	if	you	have	real-world	dependencies	that	you	haven’t	mocked,	it’s
possible	that	the	old	traffic	will	be	invalid	when	sent	over	to	the	dependencies
(e.g.,	the	data	might	no	longer	exist).

Because	of	these	challenges,	many	systems,	even	critical	systems,	are	developed
for	a	long	time	without	a	load	test.	Like	modeling	your	production	data,	this	is	a
clear	example	of	something	that	is	easier	to	maintain	if	you	start	earlier.	If	you
build	a	load-test	when	your	application	has	only	a	handful	of	dependencies,	and
improve	and	iterate	the	load-test	as	you	adapt	your	application,	you	will	have	a
far	easier	time	than	if	you	attempt	to	retrofit	load-testing	onto	an	existing	large-
scale	application.

Assuming	that	you	have	crafted	a	load	test,	the	next	question	is	the	metrics	to
watch	when	load-testing	your	application.	The	obvious	ones	are	requests	per
second	and	request	latency	because	those	are	clearly	the	user-facing	metrics.

When	measuring	latency,	it’s	important	to	realize	that	this	is	actually	a
distribution,	and	you	need	to	measure	both	the	mean	latency	as	well	as	the
outlier	percentiles	(like	the	90th	and	99th	percentile)	since	they	represent	the
“worst”	UX	of	your	application.	Problems	with	very	long	latencies	can	be
hidden	if	you	just	look	at	the	averages,	but	if	10%	of	your	users	are	having	a	bad
time,	it	can	have	a	significant	impact	on	the	success	of	your	product.

In	addition,	it’s	worth	looking	at	the	resource	usage	(CPU,	memory,	network,
disk)	of	the	application	under	load	test.	Though	these	metrics	do	not	directly
contribute	to	the	UX,	large	changes	in	resource	usage	for	your	application	should
be	identified	and	understood	in	preproduction	testing.	If	your	application	is
suddenly	consuming	twice	as	much	memory,	it’s	something	you	will	want	to

investigate,	even	if	you	pass	your	load	test,	because	eventually	such	significant
resource	growth	will	affect	the	quality	and	availability	of	your	application.
Depending	on	the	circumstances,	you	might	continue	bringing	a	release	to
production,	but	at	the	same	time,	you	need	to	understand	why	the	resource
footprint	of	your	application	is	changing.

Canary	Region
When	your	application	appears	to	be	operating	correctly,	the	first	step	should	be
a	canary	region.	A	canary	region	is	a	deployment	that	receives	real-world	traffic
from	people	and	teams	who	want	to	validate	your	release.	These	can	be	internal
teams	that	depend	on	your	service,	or	they	might	be	external	customers	who	are
using	your	service.	Canaries	exist	to	give	a	team	some	early	warning	about
changes	that	you	are	about	to	roll	out	that	might	break	them.	No	matter	how
good	your	integration	and	load	testing,	it’s	always	possible	that	a	bug	will	slip
through	that	isn’t	covered	by	your	tests,	but	is	critical	to	some	user	or	customer.
In	such	cases,	it	is	much	better	to	catch	these	issues	in	a	space	where	everyone
using	or	deploying	against	the	service	understands	that	there	is	a	higher
probability	of	failure.	This	is	what	the	canary	region	is.

Canaries	must	be	treated	as	a	production	region	in	terms	of	monitoring,	scale,
features,	and	so	on.	However,	because	it	is	the	first	stop	on	the	release	process,	it
is	also	the	location	most	likely	to	see	a	broken	release.	This	is	OK;	in	fact	it	is
precisely	the	point.	Your	customers	will	knowingly	use	a	canary	for	lower-risk
use	cases	(e.g.,	development	or	internal	users)	so	that	they	can	get	an	early
indication	of	any	breaking	changes	that	you	might	be	rolling	out	as	part	of	a
release.

Because	the	goal	of	a	canary	is	to	get	early	feedback	on	a	release,	it	is	a	good
idea	to	leave	the	release	in	the	canary	region	for	a	few	days.	This	enables	a	broad
collection	of	customers	to	access	it	before	you	move	on	to	additional	regions.
The	need	for	this	length	of	time	is	that	sometimes	a	bug	is	probabilistic	(e.g.,	1%
of	requests)	or	it	manifests	only	in	an	edge	case	that	takes	some	time	to	present
itself.	It	might	not	even	be	severe	enough	to	trigger	automated	alerts,	but	there
might	be	a	problem	in	business	logic	that	is	visible	only	via	customer
interactions.

Identifying	Region	Types
When	you	begin	thinking	about	rolling	out	your	software	across	the	world,	it’s
important	to	think	about	the	different	characteristics	of	your	different	regions.
After	you	begin	rolling	out	software	to	production	regions,	you	need	to	run	it
through	integration	testing	as	well	as	initial	canary	testing.	This	means	that	any
issues	you	find	will	be	issues	that	did	not	manifest	in	either	of	these	settings.
Think	about	your	different	regions.	Do	some	get	more	traffic	than	others?	Are
some	accessed	in	a	different	way?	An	example	of	a	difference	might	be	that	in
the	developing	world,	traffic	is	more	likely	to	come	from	mobile	web	browsers.
Thus,	a	region	that	is	geographically	close	to	more	developing	countries	might
have	significantly	more	mobile	traffic	than	your	test	or	canary	regions.

Another	example	might	be	input	language.	Regions	in	non-English	speaking
areas	of	the	world	might	send	more	Unicode	characters	that	could	manifest	bugs
in	string	or	character	handling.	If	you	are	building	an	API-driven	service,	some
APIs	might	be	more	popular	in	some	regions	versus	others.	All	of	these	things
are	examples	of	differences	that	might	be	present	in	your	application	and	might
be	different	than	your	canary	traffic.	Each	of	these	differences	is	a	possible
source	of	a	production	incident.	Build	a	table	of	different	characteristics	that	you
think	are	important.	Identifying	these	characteristics	will	help	you	plan	your
global	rollout.

Constructing	a	Global	Rollout
Having	identified	the	characteristics	of	your	regions,	you	want	to	identify	a	plan
for	rolling	out	to	all	regions.	Obviously,	you	want	to	minimize	the	impact	of	a
production	outage,	so	a	great	first	region	to	start	with	is	a	region	that	looks
mostly	like	your	canary	and	has	light	user	traffic.	Such	a	region	is	very	unlikely
to	have	problems,	but	if	they	do	occur,	the	impact	is	also	smaller	because	the
region	receives	less	traffic.

With	a	successful	rollout	to	the	first	production	region,	you	need	to	decide	how
long	to	wait	before	moving	on	to	the	next	region.	The	reason	for	waiting	is	not	to
artificially	delay	your	release;	rather,	it’s	to	wait	long	enough	for	a	fire	to	send
up	smoke.	This	time-to-smoke	period	is	a	measure	of	generally	how	long	it	takes
between	a	rollout	completing	and	your	monitoring	seeing	some	sign	of	a
problem.	Clearly	if	a	rollout	contains	a	problem,	the	minute	the	rollout

completes,	the	problem	is	present	in	your	infrastructure.	But	even	though	it	is
present,	it	can	take	some	time	to	manifest.	For	example,	a	memory	leak	might
take	an	hour	or	more	before	the	impact	of	the	leaked	memory	is	clearly
discernible	in	monitoring	or	is	affecting	users.	The	time-to-smoke	is	the
probability	distribution	that	indicates	how	long	you	should	wait	in	order	to	have
a	strong	probability	that	your	release	is	operating	correctly.	Generally	speaking,
a	decent	rule	of	thumb	is	doubling	the	average	time	it	takes	for	a	problem	to
manifest.

If,	over	the	past	six	months,	each	outage	took	an	average	of	an	hour	to	show	up,
waiting	two	hours	between	regional	rollouts	gives	you	a	decent	probability	that
your	release	is	successful.	If	you	want	to	derive	richer	(and	more	meaningful)
statistics	based	on	the	history	of	your	application,	you	can	estimate	this	time-to-
smoke	even	more	closely.

Having	successfully	rolled	out	to	a	canary-like,	low-traffic	region,	it’s	time	to
roll	out	to	a	canary-like,	high-traffic	region.	This	is	a	region	where	the	input	data
looks	like	that	in	your	canary,	but	it	receives	a	large	volume	of	traffic.	Because
you	successfully	rolled	out	to	a	similar	looking	region	with	lower	traffic,	at	this
point	the	only	thing	you	are	testing	is	your	application’s	ability	to	scale.	If	you
safely	perform	this	rollout,	you	can	have	strong	confidence	in	the	quality	of	your
release.

After	you	have	rolled	out	to	a	high-traffic	region	receiving	canary-like	traffic,
you	should	follow	the	same	pattern	for	other	potential	differences	in	traffic.	For
example,	you	might	roll	out	to	a	low-traffic	region	in	Asia	or	Europe	next.	At
this	point,	it	might	be	tempting	to	accelerate	your	rollout,	but	it	is	critically
important	to	roll	out	only	to	a	single	region	that	represents	any	significant
change	in	either	input	or	load	to	your	release.	After	you	are	confident	that	you
have	tested	all	of	the	potential	variability	in	the	production	input	to	your
application,	you	then	can	start	parallizing	the	release	to	speed	it	up	with	strong
confidence	that	it	is	operating	correctly	and	your	rollout	can	complete
successfully.

When	Something	Goes	Wrong
So	far,	we	have	seen	the	pieces	that	go	into	setting	up	a	worldwide	rollout	for

your	software	system,	and	we	have	seen	the	ways	that	you	can	structure	this
rollout	to	minimize	the	chances	that	something	goes	wrong.	But	what	do	you	do
when	something	actually	does	go	wrong?	All	emergency	responders	know	that
in	the	heat	and	panic	of	a	crisis,	your	brain	is	significantly	stressed	and	it	is
much	more	difficult	to	remember	even	the	simplest	processes.	Add	to	this
pressure	the	knowledge	that	when	an	outage	happens,	everyone	in	the	company
from	the	CEO	down	is	going	to	be	feverishly	waiting	for	the	“all	clear”	signal,
and	you	can	see	how	easy	it	is	to	make	a	mistake	under	this	pressure.
Additionally,	in	such	circumstances,	a	simple	mistake,	like	forgetting	a	particular
step	in	a	recovery	process,	can	make	a	bad	situation	an	order	of	magnitude
worse.

For	all	of	these	reasons,	it	is	critical	that	you	are	capable	of	responding	quickly,
calmly,	and	correctly	when	a	problem	happens	with	a	rollout.	To	ensure	that
everything	necessary	is	done,	and	done	in	the	correct	order,	it	pays	to	have	a
clear	checklist	of	tasks	organized	in	the	order	in	which	they	are	to	be	executed	as
well	as	the	expected	output	for	each	step.	Write	down	every	step,	no	matter	how
obvious	it	might	seem.	In	the	heat	of	the	moment,	even	the	most	obvious	and
easy	steps	can	be	the	ones	that	are	forgotten	and	accidentally	skipped.

The	way	that	other	first	responders	ensure	a	correct	response	in	a	high-stress
situation	is	to	practice	that	response	without	the	stress	of	the	emergency.	The
same	practice	applies	to	all	the	activities	that	you	might	take	in	response	to	a
problem	with	your	rollout.	You	begin	by	identifying	all	of	the	steps	needed	to
respond	to	an	issue	and	perform	a	rollback.	Ideally,	the	first	response	is	to	“stop
the	bleeding,”	to	move	user	traffic	away	from	the	impacted	region(s)	and	into	a
region	where	the	rollout	hasn’t	happened	and	your	system	is	operating	correctly.
This	is	the	first	thing	you	should	practice.	Can	you	successfully	direct	traffic
away	from	a	region?	How	long	does	it	take?

The	first	time	you	attempt	to	move	traffic	using	a	DNS-based	traffic	load
balancer,	you	will	realize	just	how	long	and	in	how	many	ways	our	computers
cache	DNS	entries.	It	can	take	nearly	a	day	to	fully	drain	traffic	away	from	a
region	using	a	DNS-based	traffic	shaper.	Regardless	of	how	your	first	attempt	to
drain	traffic	goes,	take	notes.	What	worked	well?	What	went	poorly?	Given	this
data,	set	a	goal	for	how	long	a	traffic	drain	should	take	in	terms	of	time	to	drain	a
percentage	of	traffic,	for	example,	being	able	to	drain	99%	of	traffic	in	less	than

10	minutes.	Keep	practicing	until	you	can	achieve	that	goal.	You	might	need	to
make	architectural	changes	to	make	this	possible.	You	might	need	to	add
automation	so	that	humans	aren’t	cutting	and	pasting	commands.	Regardless	of
necessary	changes,	practice	will	ensure	that	you	are	more	capable	at	responding
to	an	incident	and	that	you	will	learn	where	your	system	design	needs	to	be
improved.

The	same	sort	of	practice	applies	to	every	action	that	you	might	take	on	your
system.	Practice	a	full-scale	data	recovery.	Practice	a	global	rollback	of	your
system	to	a	previous	version.	Set	goals	for	the	length	of	time	it	should	take.	Note
any	places	where	you	made	mistakes,	and	add	validation	and	automation	to
eliminate	the	possibility	of	mistakes.	Achieving	your	incident	reaction	goals	in
practice	gives	you	confidence	that	you	will	be	able	to	respond	correctly	in	a	real
incident.	But	just	like	every	emergency	responder	continues	to	train	and	learn,
you	too	need	to	set	up	a	regular	cadence	of	practice	to	ensure	that	everyone	on	a
team	stays	well	versed	in	the	proper	responses	and	(perhaps	more	important)	that
your	responses	stay	up	to	date	as	your	system	changes.

Worldwide	Rollout	Best	Practices
Distribute	each	image	around	the	world.	A	successful	rollout	depends
on	the	release	bits	(binaries,	images,	etc.)	being	nearby	to	where	they
will	be	used.	This	also	ensures	reliability	of	the	rollout	in	the	presence
of	networking	slowdowns	or	irregularities.	Geographic	distribution
should	be	a	part	of	your	automated	release	pipeline	for	guaranteed
consistency.

Shift	as	much	of	your	testing	as	possible	to	the	left	by	having	as	much
extensive	integration	and	replay	testing	of	your	application	as	possible.
You	want	to	start	a	rollout	only	with	a	release	that	you	strongly	believe
to	be	correct.

Begin	a	release	in	a	canary	region,	which	is	a	preproduction
environment	in	which	other	teams	or	large	customers	can	validate	their
use	of	your	service	before	you	begin	a	larger-scale	rollout.

Identify	different	characteristics	of	the	regions	where	you	are	rolling

out.	Each	difference	can	be	one	that	causes	a	failure	and	a	full	or	partial
outage.	Try	to	roll	out	to	low-risk	regions	first.

Document	and	practice	your	response	to	any	problem	or	process	(e.g.,	a
rollback)	that	you	might	encounter.	Trying	to	remember	what	to	do	in
the	heat	of	the	moment	is	a	recipe	for	forgetting	something	and	making
a	bad	problem	worse.

Summary
It	might	seem	unlikely	today,	but	most	of	us	will	end	up	running	a	worldwide
scale	system	sometime	during	our	careers.	This	chapter	described	how	you	can
gradually	build	and	iterate	your	system	to	be	a	truly	global	design.	It	also
discussed	how	you	can	set	up	your	rollout	to	ensure	minimal	downtime	of	the
system	while	it	is	being	updated.	Finally,	we	covered	setting	up	and	practicing
the	processes	and	procedures	necessary	to	react	when	(note	that	we	didn’t	say
“if”)	something	goes	wrong.

Chapter	8.	Resource	Management

In	this	chapter,	we	focus	on	the	best	practices	for	managing	and	optimizing
Kubernetes	resources.	We	discuss	workload	scheduling,	cluster	management,
pod	resource	management,	namespace	management,	and	scaling	applications.
We	also	dive	into	some	of	the	advanced	scheduling	techniques	that	Kubernetes
provides	through	affinity,	anti-affinity,	taints,	tolerations,	and	nodeSelectors.

We	show	you	how	to	implement	resource	limits,	resource	requests,	pod	Quality
of	Service,	PodDisruptionBudgets,	LimitRangers,	and	anti-affinity	policies.

Kubernetes	Scheduler
The	Kubernetes	scheduler	is	one	of	the	main	components	that	is	hosted	in	the
control	plane.	The	scheduler	allows	Kubernetes	to	make	placement	decisions	for
pods	deployed	to	the	cluster.	It	deals	with	optimization	of	resources	based	on
constraints	of	the	cluster	as	well	as	user-specified	constraints.	It	uses	a	scoring
algorithm	that	is	based	on	predicates	and	priorities.

Predicates
The	first	function	Kubernetes	uses	to	make	a	scheduling	decision	is	the	predicate
function,	which	determines	what	nodes	the	pods	can	be	scheduled	on.	It	implies
a	hard	constraint,	so	it	returns	a	value	of	true	or	false.	An	example	would	be
when	a	pod	requests	4	GB	of	memory	and	a	node	cannot	satisfy	this
requirement.	The	node	would	return	a	false	value	and	would	be	removed	from
viable	nodes	for	the	pod	to	be	scheduled	to.	Another	example	would	be	if	the
node	is	set	to	unschedulable;	it	would	then	be	removed	from	the	scheduling
decision.

The	scheduler	checks	the	predicates	based	on	order	of	restrictiveness	and
complexity.	As	of	this	writing,	the	following	are	the	predicates	that	the	scheduler
checks	for:

 CheckNodeConditionPred,

 CheckNodeUnschedulablePred,
 GeneralPred,
 HostNamePred,
 PodFitsHostPortsPred,
 MatchNodeSelectorPred,
 PodFitsResourcesPred,
 NoDiskConflictPred,
 PodToleratesNodeTaintsPred,
 PodToleratesNodeNoExecuteTaintsPred,
 CheckNodeLabelPresencePred,
 CheckServiceAffinityPred,
 MaxEBSVolumeCountPred,
 MaxGCEPDVolumeCountPred,
 MaxCSIVolumeCountPred,
 MaxAzureDiskVolumeCountPred,
 MaxCinderVolumeCountPred,
 CheckVolumeBindingPred,
 NoVolumeZoneConflictPred,
 CheckNodeMemoryPressurePred,
 CheckNodePIDPressurePred,
 CheckNodeDiskPressurePred,
 MatchInterPodAffinityPred

Priorities
Whereas	predicates	indicate	a	true	or	false	value	and	dismiss	a	node	for
scheduling,	the	priority	value	ranks	all	of	the	valid	nodes	based	on	a	relative
value.	The	following	priorities	are	scored	for	nodes:

 EqualPriority
 MostRequestedPriority
 RequestedToCapacityRatioPriority
 SelectorSpreadPriority
 ServiceSpreadingPriority
 InterPodAffinityPriority
 LeastRequestedPriority
 BalancedResourceAllocation
 NodePreferAvoidPodsPriority
 NodeAffinityPriority
 TaintTolerationPriority
 ImageLocalityPriority
 ResourceLimitsPriority

The	scores	will	be	added,	and	then	a	node	is	given	its	final	score	to	indicate	its
priority.	For	example,	if	a	pod	requires	600	millicores	and	there	are	two	nodes,
one	with	900	millicores	available	and	one	with	1,800	millicores,	the	node	with

1,800	millicores	available	will	have	a	higher	priority.

If	nodes	are	returned	with	the	same	priority,	the	scheduler	will	use	a
selectHost()	function,	which	selects	a	node	in	a	round-robin	fashion.

Advanced	Scheduling	Techniques
For	most	cases,	Kubernetes	does	a	good	job	of	optimally	scheduling	pods	for
you.	It	takes	into	account	pods	that	are	placed	only	on	nodes	that	have	sufficient
resources.	It	also	tries	to	spread	pods	from	the	same	ReplicaSet	across	nodes	to
increase	availability	and	will	balance	resource	utilization.	When	this	is	not	good
enough,	Kubernetes	gives	you	the	flexibility	to	influence	how	resources	are
scheduled.	For	example,	you	might	want	to	schedule	pods	across	availability
zones	to	mitigate	a	zonal	failure	causing	downtime	to	your	application.	You
might	also	want	to	colocate	pods	to	a	specific	host	for	performance	benefits.

Pod	Affinity	and	Anti-Affinity
Pod	affinity	and	anti-affinity	let	you	set	rules	to	place	pods	relative	to	other	pods.
These	rules	allow	you	to	modify	the	scheduling	behavior	and	override	the
scheduler’s	placement	decisions.

For	example,	an	anti-affinity	rule	would	allow	you	to	spread	pods	from	a
ReplicaSet	across	multiple	datacenter	zones.	It	does	this	by	utilizing	keylabels
set	on	the	pods.	Setting	the	key/value	pairs	instructs	the	scheduler	to	schedule
the	pods	on	the	same	node	(affinity)	or	prevent	the	pods	from	scheduling	on	the
same	nodes	(anti-affinity).

Following	is	an	example	of	setting	a	pod	anti-affinity	rule:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 selector:
 matchLabels:
 app: frontend
 replicas: 4
 template:

 metadata:
 labels:
 app: frontend
 spec:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - frontend
 topologyKey: "kubernetes.io/hostname"
 containers:
 - name: nginx
 image: nginx:alpine

This	manifest	of	an	NGINX	deployment	has	four	replicas	and	the	selector	label
app=frontend.	The	deployment	has	a	PodAntiAffinity	stanza	configured	that
will	ensure	that	the	scheduler	does	not	colocate	replicas	on	a	single	node.	This
ensures	that	if	a	node	fails,	there	are	still	enough	replicas	of	NGINX	to	serve
data	from	its	cache.

nodeSelector
A	nodeSelector	is	the	easiest	way	to	schedule	pods	to	a	particular	node.	It	uses
label	selectors	with	key/value	pairs	to	make	the	scheduling	decision.	For
example,	you	might	want	to	schedule	pods	to	a	specific	node	that	has	specialized
hardware,	such	as	a	GPU.	You	might	ask,	“Can’t	I	do	this	with	a	node	taint?”
The	answer	is,	yes,	you	can.	The	difference	is	that	you	use	a	nodeSelector	when
you	want	to	request	a	GPU-enabled	node,	whereas	a	taint	reserves	a	node	for
only	GPU	workloads.	You	can	use	both	node	taints	and	nodeSelectors	together
to	reserve	the	nodes	for	only	GPU	workloads,	and	use	the	nodeSelector	to
automatically	select	a	node	with	a	GPU.

Following	is	an	example	of	labeling	a	node	and	using	a	nodeSelector	in	the	pod
specification:

kubectl label node <node_name> disktype=ssd

Now,	let’s	create	a	pod	specification	with	a	nodeSelector	key/value	of
disktype: ssd:

apiVersion: v1
kind: Pod
metadata:
 name: redis
 labels:
 env: prod
spec:
 containers:
 - name: frontend
 image: nginx:alpine
 imagePullPolicy: IfNotPresent
 nodeSelector:
 disktype: ssd

Using	the	nodeSelector	schedules	the	pod	to	only	nodes	that	have	the	label
disktype=ssd:

Taints	and	Tolerations
Taints	are	used	on	nodes	to	repel	pods	from	being	scheduled	on	them.	But	isn’t
that	what	anti-affinity	is	for?	Yes,	but	taints	take	a	different	approach	than	pod
anti-affinity	and	serve	a	different	use	case.	For	example,	you	might	have	pods
that	require	a	specific	performance	profile,	and	you	do	not	want	to	schedule	any
other	pods	to	the	specific	node.	Taints	work	in	conjunction	with	tolerations,
which	allow	you	to	override	tainted	nodes.	The	combination	of	the	two	gives
you	fine-grained	control	over	anti-affinity	rules.

In	general,	you	will	use	taints	and	tolerations	for	the	following	use	cases:

Specialized	node	hardware

Dedicated	node	resources

Avoiding	degraded	nodes

There	are	multiple	taint	types	that	affect	scheduling	and	running	containers:

NoSchedule

A	hard	taint	that	prevents	scheduling	on	the	node

PreferNoSchedule

Schedules	only	if	pods	cannot	be	scheduled	on	other	nodes

NoExecute

Evicts	already-running	pods	on	the	node

NodeCondition

Taints	a	node	if	it	meets	a	specific	condition

Figure	8-1	shows	an	example	of	a	node	that	is	tainted	with
gpu=true:NoSchedule.	Pod	Spec	1	has	a	toleration	key	with	gpu,	so	it	will	be
scheduled	to	the	tainted	node.	Pod	Spec	2	has	a	toleration	key	of	no-gpu,	so	it
will	not	be	scheduled	to	the	node.

Figure	8-1.	Kubernetes	taints	and	tolerations

When	a	pod	cannot	be	scheduled	due	to	tainted	nodes,	you’ll	see	an	error
message	like	the	following:

Warning: FailedScheduling 10s (x10 over 2m) default-scheduler 0/2 nodes are
available: 2 node(s) had taints that the pod did not tolerate.

Now	that	we’ve	seen	how	we	can	manually	add	taints	to	affect	scheduling,	there
is	also	the	powerful	concept	of	taint-based	eviction,	which	allows	the	eviction	of
running	pods.	For	example,	if	a	node	becomes	unhealthy	due	to	a	bad	disk	drive,
the	taint-based	eviction	can	reschedule	the	pods	on	the	host	to	another	healthy
node	in	the	cluster.

Pod	Resource	Management
One	of	the	most	important	aspects	of	managing	applications	in	Kubernetes	is
appropriately	managing	pod	resources.	Managing	pod	resources	consists	of
managing	CPU	and	memory	to	optimize	the	overall	utilization	of	your
Kubernetes	cluster.	You	can	manage	these	resources	at	the	container	level	and	at
the	namespace	level.	There	are	other	resources,	such	as	network	and	storage,	but
Kubernetes	doesn’t	yet	have	a	way	to	set	requests	and	limits	for	those	resources.

For	the	scheduler	to	optimize	resources	and	make	intelligent	placement
decisions,	it	needs	to	understand	the	requirements	of	an	application.	As	an
example,	if	a	container	(application)	needs	a	minimum	of	2	GB	to	perform,	we
need	to	define	this	in	our	pod	specification,	so	the	scheduler	knows	that	the
container	requires	2	GB	of	memory	on	the	host	to	which	it	schedules	the
container.

Resource	Request
A	Kubernetes	resource	request	defines	that	a	container	requires	X	amount	of
CPU	or	memory	to	be	scheduled.	If	you	were	to	specify	in	the	pod	specification
that	a	container	requires	8	GB	for	its	resource	request	and	all	your	nodes	have
7.5	GB	of	memory,	the	pod	would	not	be	scheduled.	If	the	pod	is	not	able	to	be
scheduled,	it	will	go	into	a	pending	state	until	the	required	resources	are
available.

So	let’s	take	a	look	at	how	this	works	in	our	cluster.

To	determine	the	available	free	resource	in	your	cluster,	use	kubectl top:

kubectl top nodes

The	output	should	look	like	this	(the	memory	size	might	be	different	for	your

cluster):

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
aks-nodepool1-14849087-0 524m 27% 7500Mi 33%
aks-nodepool1-14849087-1 468m 24% 3505Mi 27%
aks-nodepool1-14849087-2 406m 21% 3051Mi 24%
aks-nodepool1-14849087-3 441m 22% 2812Mi 22%

As	this	example	shows,	the	largest	amount	of	memory	available	to	a	host	is
7,500	Mi,	so	let’s	schedule	a	pod	that	requests	8,000	Mi	of	memory:

apiVersion: v1
kind: Pod
metadata:
 name: memory-request
spec:
 containers:
 - name: memory-request
 image: polinux/stress
 resources:
 requests:
 memory: "8000Mi"

Notice	that	the	pod	will	stay	pending,	and	if	you	look	at	the	events	on	the	pods,
you’ll	see	that	no	nodes	are	avalaible	to	schedule	the	pods:

kubectl describe pods memory-request

The	output	of	the	event	should	look	like	this:

Events:
 Type Reason Age From Message
 Warning FailedScheduling 27s (x2 over 27s) default-scheduler 0/3 nodes are
available: 3 Insufficient memory.

Resource	Limits	and	Pod	Quality	of	Service
Kubernetes	resource	limits	define	the	maximum	CPU	or	memory	that	a	pod	is
given.	When	you	specify	limits	for	CPU	and	memory,	each	takes	a	different
action	when	it	reaches	the	specified	limit.	With	CPU	limits,	the	container	is
throttled	from	using	more	than	its	specified	limit.	With	memory	limits,	the	pod	is
restarted	if	it	reaches	its	limit.	The	pod	might	be	restarted	on	the	same	host	or	a

different	host	within	the	cluster.

Specifying	limits	for	containers	is	a	good	practice	to	ensure	that	applications	are
allotted	their	fair	share	of	resources	within	the	cluster:

apiVersion: v1
kind: Pod
metadata:
 name: cpu-demo
 namespace: cpu-example
spec:
 containers:
 - name: frontend
 image: nginx:alpine
 resources:
 limits:
 cpu: "1"
 requests:
 cpu: "0.5"

apiVersion: v1
kind: Pod
metadata:
 name: qos-demo
 namespace: qos-example
spec:
 containers:
 - name: qos-demo-ctr
 image: nginx:alpine
 resources:
 limits:
 memory: "200Mi"
 cpu: "700m"
 requests:
 memory: "200Mi"
 cpu: "700m"

When	a	pod	is	created,	it’s	assigned	one	of	the	following	Quality	of	Service
(QoS)	classes:

Guaranteed

Burstable

Best	effort

The	pod	is	assigned	a	QoS	of	guaranteed	when	CPU	and	memory	both	have
request	and	limits	that	match.	A	burstable	QoS	is	when	the	limits	are	set	higher
than	the	request,	meaning	that	the	container	is	guaranteed	its	request,	but	it	can
also	burst	to	the	limit	set	for	the	container.	A	pod	is	assigned	best	effort	when	no
request	or	limits	are	set	for	the	containers	in	the	pod.

Figure	8-2	depicts	how	QoS	is	assigned	to	pods.

Figure	8-2.	Kubernetes	QoS

NOTE
With	guaranteed	QoS,	if	you	have	multiple	containers	in	your	pod,	you’ll	need	to	have
memory	request	and	limits	set	for	each	container,	and	you’ll	also	need	CPU	request	and	limits
set	for	each	container.	If	the	request	and	limits	are	not	set	for	all	containers,	it	will	not	be
assigned	guaranteed	QoS.

PodDisruptionBudgets
At	some	point	in	time,	Kubernetes	might	need	to	evict	pods	from	a	host.	There
are	two	types	of	evictions:	voluntary	and	involuntary	disruptions.	Involuntary
disruptions	can	be	caused	by	hardware	failure,	network	partitions,	kernel	panics,
or	a	node	being	out	of	resources.	Voluntary	evictions	can	be	caused	by
performing	maintenance	on	the	cluster,	the	Cluster	Autoscaler	deallocating

nodes,	or	updating	pod	templates.	To	minimize	the	impact	to	your	application,
you	can	set	a	PodDisruptionBudget	to	ensure	uptime	of	the	application	when
pods	need	to	be	evicted.	A	PodDisruptionBudget	allows	you	to	set	a	policy	on
the	minimum	available	and	maximum	unavailable	pods	during	voluntary
eviction	events.	An	example	of	a	voluntary	eviction	would	be	when	draining	a
node	to	perform	maintenance	on	the	node.

For	example,	you	might	specify	that	no	more	than	20%	of	pods	belonging	to
your	application	can	be	down	at	a	given	time.	You	could	also	specify	this	policy
in	terms	of	X	number	of	replicas	that	must	always	be	available.

Minimum	available

In	the	following	example,	we	set	a	PodDisruptionBudget	to	handle	a	minimum
available	to	5	for	app:	front-end.

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
 name: frontend-pdb
spec:
 minAvailable: 5
 selector:
 matchLabels:
 app: frontend

In	this	example,	the	PodDisruptionBudget	specifies	that	for	the	frontend	app
there	must	always	be	five	replica	pods	available	at	any	given	time.	In	this
scenario,	an	eviction	can	evict	as	many	pods	as	it	wants,	as	long	as	five	are
available.

Maximum	unavailable

In	the	next	example,	we	set	a	PodDisruptionBudget	to	handle	a	maximum
unavailable	to	10	replicas	for	the	frontend	app:

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
 name: frontend-pdb
spec:
 maxUnavailable: 20%

 selector:
 matchLabels:
 app: frontend

In	this	example,	the	PodDisruptionBudget	specifies	that	no	more	than	20%	of
replica	pods	can	be	unavailable	at	any	given	time.	In	this	scenario,	an	eviction
can	evict	a	maximum	of	20%	of	pods	during	a	voluntary	disruption.

It’s	essential	that	when	designing	your	Kubernetes	cluster	you	think	about	the
sizing	of	the	cluster	resources	so	that	you	can	handle	a	number	of	failed	nodes.
For	example,	if	you	have	a	four-node	cluster	and	one	node	fails,	you	will	be
losing	a	quarter	of	your	cluster	capacity.

NOTE
When	specifying	a	pod	disruption	budget	as	a	percentage,	it	might	not	correlate	to	a	specific
number	of	pods.	For	example,	if	your	application	has	seven	pods	and	you	specify
maxAvailable	to	50%,	it’s	not	clear	whether	that	is	three	or	four	pods.	In	this	case,	Kubernetes
rounds	up	to	the	closest	integer,	so	the	maxAvailable	would	be	four	pods.

Managing	Resources	by	Using	Namespaces
Namespaces	in	Kubernetes	give	you	a	nice	logical	separation	of	resources
deployed	to	a	cluster.	This	allows	you	to	set	resource	quotas	per	namespace,
Role-Based	Access	Control	(RBAC)	per	namespace,	and	also	network	policies
per	namespace.	It	gives	you	soft	multitenancy	features,	so	you	can	separate	out
workloads	in	a	cluster	without	dedicating	specific	infrastructure	to	a	team	or
application.	This	allows	you	to	get	the	most	out	of	your	cluster	resource	while
also	maintaining	a	logical	form	of	separation.

For	example,	you	could	create	a	namespace	per	team	and	give	each	team	a	quota
on	the	number	of	resources	that	it	can	utilize,	such	as	CPU	and	memory.

When	designing	how	you	want	to	configure	a	namespace,	you	should	think
about	how	you	want	to	control	access	to	a	specific	set	of	applications.	If	you
have	multiple	teams	that	will	be	using	a	single	cluster,	it	is	typically	best	to
allocate	a	namespace	to	each	team.	If	the	cluster	is	dedicated	to	only	one	team,	it
might	make	sense	to	allocate	a	namespace	for	each	service	deployed	to	the

cluster.	There’s	no	single	solution	to	this;	your	team	organization	and
responsibilities	will	drive	the	design.

After	deploying	a	Kubernetes	cluster,	you’ll	see	the	following	namespaces	in
your	cluster:

kube-system

Kubernetes	internal	components	are	deployed	here,	such	as	coredns,	kube-
proxy,	and	metrics-server.

default

This	is	the	default	namespace	that	is	used	when	you	don’t	specify	a
namespace	in	the	resource	object.

kube-public

Used	for	anonymous	and	unauthenticated	content,	and	reserved	for	system
usage.

You’ll	want	to	avoid	using	the	default	namespace	because	it	can	make	it	really
easy	to	make	mistakes	when	managing	resources	within	your	cluster.

When	working	with	namespaces,	you	need	to	use	the	–namespace	flag,	or	-n	for
short,	when	working	with	kubectl:

kubectl create ns team-1

kubectl get pods --namespace team-1

You	can	also	set	your	kubectl	context	to	a	specific	namespace,	which	is	useful
so	that	you	don’t	need	to	add	the	–namespace	flag	with	every	command.	You
can	set	your	namespace	context	by	using	the	following	command:

kubectl config set-context my-context --namespace=team-1

TIP
When	dealing	with	multiple	namespaces	and	clusters,	it	can	be	a	pain	to	set	different
namespaces	and	cluster	context.	We’ve	found	that	using	kubens	and	kubectx	can	help	make	it
easy	to	switch	between	these	different	namespaces	and	contexts.

https://github.com/ahmetb/kubectx
https://github.com/ahmetb/kubectx

ResourceQuota
When	multiple	teams	or	applications	share	a	single	cluster,	it’s	important	to	set
up	ResourceQuotas	on	your	namespaces.	ResourceQuotas	allow	you	to	divvy
up	the	cluster	in	logical	units	so	that	no	single	namespace	can	consume	more
than	its	share	of	resources	in	the	cluster.	The	following	resources	can	have	a
quota	set	for	them:

Compute	resources

cpu:	Sum	of	CPU	requests	cannot	exceed	this	amount

limits.cpu:	Sum	of	CPU	limits	cannot	exceed	this	amount

memory:	Sum	of	memory	requests	cannot	exceed	this	amount

Storage	resources

requests.storage:	Sum	of	storage	requests	cannot	exceed
this	value

persistentvolumeclaims:	The	total	number	of
PersistentVolume	claims	that	can	exist	in	the	namespace

storageclass.request:	Volume	claims	associated	with	the
specified	storage-class	cannot	exceed	this	value

storageclass.pvc:	The	total	number	of	PersistentVolume
claims	that	can	exist	in	the	namespace

Object	count	quotas	(only	an	example	set)

count/pvc

count/services

count/deployments

count/replicasets

As	you	can	see	from	this	list,	Kubernetes	gives	you	fine-grained	control	over
how	you	carve	up	resource	quotas	per	namespace.	This	allows	you	to	more
efficiently	operate	resource	usage	in	a	multitenant	cluster.

Let’s	see	how	these	quotas	actually	work	by	setting	up	a	quota	on	a	namespace.
Apply	the	following	YAML	file	to	the	team-1	namespace:

apiVersion: v1
kind: ResourceQuota
metadata:
 name: mem-cpu-demo
 namespace: team-1
spec:
 hard:
 requests.cpu: "1"
 requests.memory: 1Gi
 limits.cpu: "2"
 limits.memory: 2Gi
 persistentvolumeclaims: "5"
 requests.storage: "10Gi

kubectl apply quota.yaml -n team-1

This	example	sets	quotas	for	CPU,	memory,	and	storage	on	the	team-1
namespace.

Now	let’s	try	to	deploy	an	application	to	see	how	the	resource	quotas	affect	the
deployment:

kubectl run nginx-quotatest --image=nginx --restart=Never --replicas=1 --port=80 --
requests='cpu=500m,memory=4Gi' --limits='cpu=500m,memory=4Gi' -n team-1

This	deployment	will	fail	with	the	following	error	due	to	the	memory	quota
exceeding	2Gi	of	memory:

Error from server (Forbidden): pods "nginx-quotatest" is forbidden: exceeded quota:
mem-cpu-demo

As	this	example	demonstrates,	setting	resource	quotas	can	let	you	deny
deployment	of	resources	based	on	policies	you	set	for	the	namespace.

LimitRange
We’ve	discussed	setting	request	and	limits	at	the	container	level,	but	what
happens	if	the	user	forgets	to	set	these	in	the	pod	specification?	Kubernetes
provides	an	admission	controller	that	allows	you	to	automatically	set	these	when
there	are	none	indicated	in	the	specification.

First,	create	a	namespace	to	work	with	quotas	and	LimitRanges:

kubectl create ns team-1

Apply	a	LimitRange	to	the	namespace	to	apply	defaultRequest	in	limits:

apiVersion: v1
kind: LimitRange
metadata:
 name: team-1-limit-range
spec:
 limits:
 - default:
 memory: 512Mi
 defaultRequest:
 memory: 256Mi
 type: Container

Save	this	to	limitranger.yaml	and	then	run	kubectl apply:

kubectl apply -f limitranger.yaml -n team-1

Verify	that	the	LimitRange	applies	default	limits	and	requests:

 kubectl run team-1-pod --image=nginx -n team-1

Next,	let’s	describe	the	pod	to	see	what	requests	and	limits	were	set	on	it:

kubectl describe pod team-1-pod -n team-1

You	should	see	the	following	requests	and	limits	set	on	the	pod	specification:

Limits:
 memory: 512Mi

 Requests:
 memory: 256Mi

It’s	important	to	use	LimitRange	when	using	ResourceQuotas,	because	if	no
request	or	limits	are	set	in	the	specification,	the	deployment	will	be	rejected.

Cluster	Scaling
One	of	the	first	decisions	you	need	to	make	when	deploying	a	cluster	is	the
instance	size	you’ll	want	to	use	within	your	cluster.	This	becomes	more	of	an	art
than	science,	especially	when	you’re	mixing	workloads	in	a	single	cluster.	You’ll
first	want	to	identify	what	a	good	starting	point	is	for	the	cluster;	aiming	for	a
good	balance	of	CPU	and	memory	is	one	option.	After	you’ve	decided	on	a
sensible	size	for	the	cluster,	you	can	use	a	couple	of	Kubernetes	core	primitives
to	manage	the	scaling	of	your	cluster.

Manual	scaling
Kubernetes	makes	it	easy	to	scale	your	cluster,	especially	if	you’re	using	tools
like	Kops	or	a	managed	Kubernetes	offering.	Scaling	your	cluster	manually	is
typically	just	choosing	a	new	number	of	nodes,	and	the	service	will	add	the	new
nodes	to	your	cluster.

These	tools	also	allow	you	to	create	node	pools,	which	allows	you	to	add	new
instance	types	to	an	already	running	cluster.	This	becomes	very	useful	when
running	mixed	workloads	within	a	single	cluster.	For	example,	one	workload
might	be	more	CPU	driven,	whereas	the	other	workloads	might	be	memory-
driven	applications.	Node	pools	allow	you	to	mix	multiple	instance	types	within
a	single	cluster.

But	perhaps	you	don’t	want	to	manually	do	this	and	want	it	to	autoscale.	There
are	things	that	you	need	to	take	into	consideration	with	cluster	autoscaling,	and
we	have	found	that	most	users	are	better	off	starting	with	just	manually	scaling
their	nodes	proactively	when	resources	are	needed.	If	your	workloads	are	highly
variable,	cluster	autoscaling	can	be	very	useful.

Cluster	autoscaling
Kubernetes	provides	a	Cluster	Autoscaler	add-on	that	allows	you	to	set	the

minimum	nodes	available	to	a	cluster	and	also	the	maximum	number	of	nodes	to
which	your	cluster	can	scale.	The	Cluster	Autoscaler	bases	its	scale	decision	on
when	a	pod	goes	pending.	For	example,	if	the	Kubernetes	scheduler	tries	to
schedule	a	pod	with	a	memory	request	of	4,000	Mib	and	the	cluster	has	only
2,000	Mib	available,	the	pod	will	go	into	a	pending	state.	After	the	pod	is
pending,	the	Cluster	Autoscaler	will	add	a	node	to	the	cluster.	As	soon	as	the
new	node	is	added	to	the	cluster,	the	pending	pod	is	scheduled	to	the	node.	The
downside	of	the	Cluster	Autoscaler	is	that	a	new	node	is	added	only	before	a	pod
goes	pending,	so	your	workload	may	end	up	waiting	for	a	new	node	to	come
online	when	it	is	scheduled.	As	of	Kubernetes	v1.15,	the	Cluster	Autoscaler
doesn’t	support	scaling	based	on	custom	metrics.

The	Cluster	Autoscaler	can	also	reduce	the	size	of	the	cluster	after	resources	are
no	longer	needed.	When	the	resources	are	no	longer	needed,	it	will	drain	the
node	and	reschedule	the	pods	to	new	nodes	in	the	cluster.	You’ll	want	to	use	a
PodDisruptionBudget	to	ensure	that	you	don’t	negatively	affect	your
application	when	it	performs	its	drain	operation	to	remove	the	node	from	the
cluster.

Application	Scaling
Kubernetes	provides	multiple	ways	to	scale	applications	in	your	cluster.	You	can
scale	an	application	by	manually	changing	the	number	of	replicas	within	a
deployment.	You	can	also	change	the	ReplicaSet	or	replication	controller,	but	we
don’t	recommend	managing	your	applications	through	those	implementations.
Manual	scaling	is	perfectly	fine	for	workloads	that	are	static	or	when	you	know
the	times	that	the	workload	spikes,	but	for	workloads	that	experience	sudden
spikes	or	workloads	that	are	not	static,	manual	scaling	is	not	ideal	for	the
application.	Happily,	Kubernetes	also	provides	a	Horizontal	Pod	Autoscaler
(HPA)	to	automatically	scale	workloads	for	you.

Let’s	first	take	a	look	at	how	you	can	manually	scale	a	deployment	by	applying
the	following	Deployment	manifest:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: frontend

spec:
 replicas: 3
 template:
 metadata:
 name: frontend
 labels:
 app: frontend
 spec:
 containers:
 - image: nginx:alpine
 name: frontend
 resources:
 requests:
 cpu: 100m

This	example	deploys	three	replicas	of	our	frontend	service.	We	then	can	scale
this	deployment	by	using	the	kubectl scale	command:

kubectl scale deployment frontend --replicas 5

This	results	in	five	replicas	of	our	frontend	service.	This	is	great,	but	let’s	look	at
how	we	can	add	some	intelligence	and	automatically	scale	the	application	based
on	metrics.

Scaling	with	HPA
The	Kubernetes	HPA	allows	you	to	scale	your	deployments	based	on	CPU,
memory,	or	custom	metrics.	It	performs	a	watch	on	the	deployment	and	pulls
metrics	from	the	Kubernetes	metrics-server.	It	also	allows	you	to	set	the
minimum	and	maximum	number	of	pods	available.	For	example,	you	can	define
an	HPA	policy	that	sets	the	minimum	number	of	pods	to	3	and	the	maximum
number	of	pods	to	10,	and	it	scales	when	the	deployment	reaches	80%	CPU
usage.	Setting	the	minimum	and	maximum	is	critical	because	you	don’t	want	the
HPA	to	scale	the	replicas	to	an	infinite	amount	due	to	an	application	bug	or	issue.

The	HPA	has	the	following	default	setting	for	sync	metrics,	upscaling,	and
downscaling	replicas:

horizontal-pod-autoscaler-sync-period

Default	of	30	seconds	for	syncing	metrics

horizontal-pod-autoscaler-upscale-delay

Default	of	three	minutes	between	two	upscale	operations

horizontal-pod-autoscaler-downscale-delay

Default	of	five	minutes	between	two	downscale	operations

You	can	change	the	defaults	by	using	their	relative	flags,	but	you	need	to	be
careful	when	doing	so.	If	your	workload	is	extremely	variable,	it’s	worth	playing
around	with	the	settings	to	optimize	them	for	your	specific	use	case.

Let’s	go	ahead	and	set	up	an	HPA	policy	for	the	frontend	application	that	you
deployed	in	the	previous	exercise.

First,	expose	the	deployment	on	port	80:

 kubectl expose deployment frontend --port 80

Next,	set	the	autoscale	policy:

kubectl autoscale deployment frontend --cpu-percent=50 --min=1 --max=10

This	sets	the	policy	to	scale	your	app	from	a	minimum	of	1	replica	to	a
maximum	of	10	replicas	and	will	invoke	the	scale	operation	when	the	CPU	load
reaches	50%.

Let’s	generate	some	load	so	that	we	can	see	the	deployment	autoscale:

kubectl run -i --tty load-generator --image=busybox /bin/sh

Hit enter for command prompt
while true; do wget -q -O- http://frontend.default.svc.cluster.local; done

kubectl get hpa

You	might	need	to	wait	a	few	minutes	to	see	the	replicas	scale	up	automatically.

NOTE
To	learn	more	about	the	internal	details	of	the	autoscaling	algorithm,	check	out	the	design

https://oreil.ly/nKnez

proposal.

HPA	with	Custom	Metrics
In	Chapter	4,	we	introduced	the	role	that	the	metrics	server	plays	in	monitoring
our	systems	in	Kubernetes.	With	the	Metrics	Server	API,	we	can	also	support
scaling	our	applications	with	custom	metrics.	The	Custom	Metrics	API	and
Metrics	Aggregator	allows	third-party	providers	to	plug	in	and	extend	the
metrics,	and	HPA	can	then	scale	based	on	these	external	metrics.	For	example,
instead	of	just	basic	CPU	and	memory	metrics,	you	could	scale	based	on	a
metric	you’re	collecting	on	an	external	storage	queue.	By	utilizing	custom
metrics	for	autoscaling,	you	have	the	ability	to	scale	application-specific	metrics
or	external	service	metrics.

Vertical	Pod	Autoscaler
The	Vertical	Pod	Autoscaler	(VPA)	differs	from	the	HPA	in	that	it	doesn’t	scale
replicas;	instead,	it	automatically	scales	requests.	Earlier	in	the	chapter,	we
talked	about	setting	requests	on	our	pods	and	how	that	guarantees	X	amount	of
resources	for	a	given	container.	The	VPA	frees	you	from	manually	adjusting
these	requests,	and	automatically	scales	up	and	scales	down	pod	requests	for
you.	For	workloads	that	can’t	scale	out	due	to	their	architecture,	this	works	well
for	automatically	scaling	the	resources.	For	example,	a	MySQL	database	doesn’t
scale	the	same	way	as	a	stateless	web	frontend.	With	MySQL,	you	might	want	to
set	the	Master	nodes	to	automatically	scale	up	based	on	workload.

The	VPA	is	more	complex	than	the	HPA,	and	it	consists	of	three	components:

Recommender

Monitors	the	current	and	past	resource	consumption,	and	provides
recommended	values	for	the	container’s	CPU	and	memory	requests

Updater

Checks	which	of	the	pods	have	the	correct	resources	set,	and	if	they	don’t,
kills	them	so	that	they	can	be	re-created	by	their	controllers	with	the	updated
requests

Admission Plugin

Sets	the	correct	resource	requests	on	new	pods

As	of	Kubernetes	v1.15,	the	VPA	is	not	recommended	for	production
deployments.

Resource	Management	Best	Practices
Utilize	pod	anti-affinity	to	spread	workloads	across	multiple	availability
zones	to	ensure	high	availability	for	your	application.

If	you’re	using	specialized	hardware,	such	as	GPU-enabled	nodes,
ensure	that	only	workloads	that	need	GPUs	are	scheduled	to	those
nodes	by	utilizing	taints.

Use	NodeCondition	taints	to	proactively	avoid	failing	or	degraded
nodes.

Apply	nodeSelectors	to	your	pod	specifications	to	schedule	pods	to
specialized	hardware	that	you	have	deployed	in	the	cluster.

Before	going	to	production,	experiment	with	different	node	sizes	to	find
a	good	mix	of	cost	and	performance	for	node	types.

If	you’re	deploying	a	mix	of	workloads	with	different	performance
characteristics,	utilize	node	pools	to	have	mixed	node	types	in	a	single
cluster.

Ensure	that	you	set	memory	and	CPU	limits	for	all	pods	deployed	to
your	cluster.

Utilize	ResourceQuotas	to	ensure	that	multiple	teams	or	applications
are	alotted	their	fair	share	of	resources	in	the	cluster.

Implement	LimitRange	to	set	default	limits	and	requests	for	pod
specifications	that	don’t	set	limits	or	requests.

Start	with	manual	cluster	scaling	until	you	understand	your	workload
profiles	on	Kubernetes.	You	can	use	autoscaling,	but	it	comes	with

additional	considerations	around	node	spin-up	time	and	cluster	scale
down.

Use	the	HPA	for	workloads	that	are	variable	and	that	have	unexpected
spikes	in	their	usage.

Summary
In	this	chapter,	we	discussed	how	you	can	optimally	manage	Kubernetes	and
application	resources.	Kubernetes	provides	many	built-in	features	to	manage
resources	that	you	can	use	to	maintain	a	reliable,	highly	utilized,	and	efficient
cluster.	Cluster	and	pod	sizing	can	be	difficult	at	first,	but	through	monitoring
your	applications	in	production	you	can	discover	ways	to	optimize	your
resources.

Chapter	9.	Networking,	Network
Security,	and	Service	Mesh

Kubernetes	is	effectively	a	manager	of	distributed	systems	across	a	cluster	of
connected	systems.	This	immediately	puts	critical	importance	on	how	the
connected	systems	communicate	with	one	another,	and	networking	is	the	key	to
this.	Understanding	how	Kubernetes	facilitates	communication	among	the
distributed	services	it	manages	is	important	for	the	effective	application	of
interservice	communication.

This	chapter	focuses	on	the	principles	that	Kubernetes	places	on	the	network	and
best	practices	around	applying	these	concepts	in	different	situations.	With	any
discussion	of	networking,	security	is	usually	brought	along	for	the	ride.	The
traditional	models	of	network	security	boundaries	being	controlled	at	the
network	layer	are	not	absent	in	this	new	world	of	distributed	systems	in
Kubernetes,	but	how	they	are	implemented	and	the	capabilities	offered	change
slightly.	Kubernetes	brings	along	a	native	API	for	network	security	policies	that
will	sound	eerily	similar	to	firewall	rules	of	old.

The	last	section	of	this	chapter	delves	into	the	new	and	scary	world	of	service
meshes.	The	term	“scary”	is	used	in	jest,	but	it	is	quite	the	Wild	West	when	it
comes	to	service	mesh	technology	in	Kubernetes.

Kubernetes	Network	Principles
Understanding	how	Kubernetes	uses	the	underlying	network	to	facilitate
communication	among	services	is	critical	to	understanding	how	to	effectively
plan	application	architectures.	Usually,	networking	topics	start	to	give	most
people	major	headaches.	We	are	going	to	keep	this	rather	simple	because	this	is
more	of	a	best	practice	guidance	than	a	lesson	on	container	networking.	Luckily
for	us,	Kubernetes	has	laid	down	some	rules	of	the	road	for	networking	that	help
to	give	us	a	start.	The	rules	outline	how	communication	is	expected	to	behave
between	different	components.	Let’s	take	a	closer	look	at	each	of	these	rules:

Container-to-container	communication	in	the	same	pod

All	containers	in	the	same	pod	share	the	same	network	space.	This
effectively	allows	localhost	communication	between	the	containers.	It	also
means	that	containers	in	the	same	pod	need	to	expose	different	ports.	This	is
done	using	the	power	of	Linux	namespaces	and	Docker	networking	to	allow
these	containers	to	be	on	the	same	local	network	through	the	use	of	a	paused
container	in	every	pod	that	does	nothing	but	host	the	networking	for	the	pod.
Figure	9-1	shows	how	Container	A	can	communicate	directly	with	Container
B	using	localhost	and	the	port	number	that	the	container	is	listening	on.

Figure	9-1.	Intrapod	communication	between	containers

Pod-to-pod	communication

All	pods	need	to	communicate	with	one	another	without	any	network	address
translation	(NAT).	This	means	that	the	IP	address	that	a	pod	is	seen	as	by	the
receiving	pod	is	the	sender’s	actual	IP	address.	This	is	handled	in	different
ways,	depending	on	the	network	plug-in	used,	which	we	discuss	in	more
detail	later	in	the	chapter.	This	rule	is	true	between	pods	on	the	same	node
and	pods	that	are	on	different	nodes	in	the	same	cluster.	This	also	extends	to
the	node	being	able	to	communicate	directly	to	the	pod	with	no	NAT
involved.	This	allows	host-based	agents	or	system	daemons	to	communicate
to	the	pods	as	needed.	Figure	9-2	is	a	representation	of	the	communication
processes	between	pods	in	the	same	node	and	pods	in	different	nodes	of	the
cluster.

Figure	9-2.	Pod	to	pod	communication	intra-	and	internode

Service-to-pod	communication

Services	in	Kubernetes	represent	a	durable	IP	address	and	port	that	is	found
on	each	node	that	will	forward	all	traffic	to	the	endpoints	that	are	mapped	to
the	service.	Over	the	different	iterations	of	Kubernetes,	the	method	in	favor
of	enabling	this	has	changed,	but	the	two	main	methods	are	via	the	use	of
iptables	or	the	newer	IP	Virtual	Server	(IPVS).	Most	implementations	today
use	the	iptables	implementation	to	enable	a	pseudo-Layer	4	load	balancer	on
each	node.	Figure	9-3	is	a	visual	representation	of	how	the	service	is	tied	to
the	pods	via	label	selectors.

Figure	9-3.	Service	to	pod	communication

Network	Plug-ins
Early	on,	the	Special	Interest	Group	(SIG)	guided	the	networking	standards	to
more	of	a	pluggable	architecture,	which	opened	the	door	for	numerous	third-
party	networking	projects,	which	in	many	cases	injected	value-added	capabilities
into	Kubernetes	workloads.	These	network	plug-ins	come	in	two	flavors.	The
most	basic	is	called	Kubenet	and	is	the	default	plug-in	provided	by	Kubernetes
natively.	The	second	type	of	plug-in	follows	the	Container	Network	Interface
(CNI)	specification,	which	is	a	generic	plug-in	network	solution	for	containers.

Kubenet
Kubenet	is	the	most	basic	network	plug-in	that	comes	out	of	the	box	in
Kubernetes.	It	is	the	simplest	of	the	plug-ins	and	provides	a	Linux	bridge,	cbr0,
that’s	a	virtual	Ethernet	pair	for	the	pods	connected	to	it.	The	pod	then	gets	an	IP
address	from	a	Classless	Inter-Domain	Routing	(CIDR)	range	that	is	distributed
across	the	nodes	of	the	cluster.	There	is	also	an	IP	masquerade	flag	that	should
be	set	to	allow	traffic	destined	to	IPs	outside	the	pod	CIDR	range	to	be
masqueraded.	This	obeys	the	rules	of	pod-to-pod	communication	because	only
traffic	destined	outside	the	pod	CIDR	undergoes	network	address	translation
(NAT).	After	the	packet	leaves	a	node	to	go	to	another	node,	some	kind	of
routing	is	put	in	place	to	facilitate	the	process	to	forward	the	traffic	to	the	correct
node.

Kubenet	Best	Practices

Kubenet	allows	for	a	simplistic	network	stack	and	does	not	consume
precious	IP	addresses	on	already	crowded	networks.	This	is	especially
true	of	cloud	networks	that	are	extended	to	on-premises	datacenters.

Ensure	that	the	pod	CIDR	range	is	large	enough	to	handle	the	potential
size	of	the	cluster	and	the	pods	in	each	cluster.	The	default	pods	per
node	set	in	kubelet	is	110,	but	you	can	adjust	this.

Understand	and	plan	accordingly	for	the	route	rules	to	properly	allow
traffic	to	find	pods	in	the	proper	nodes.	In	cloud	providers,	this	is
usually	automated,	but	on-premises	or	edge	cases	will	require

automation	and	solid	network	management.

The	CNI	Plug-in
The	CNI	plug-in	has	some	basic	requirements	set	aside	by	the	specification.
These	specifications	dictate	the	interfaces	and	minimal	API	actions	that	the	CNI
offers	and	how	it	will	interface	with	the	container	runtime	that	is	used	in	the
cluster.	The	network	management	components	are	defined	by	the	CNI,	but	they
all	must	include	some	type	of	IP	address	management	and	minimally	allow	for
the	addition	and	deletion	of	a	container	to	a	network.	The	full	original
specification	that	was	originally	derived	from	the	rkt	networking	proposal	is
available.

The	Core	CNI	project	provides	libraries	that	you	can	use	to	write	plug-ins	that
provide	the	basic	requirements	and	that	can	call	other	plug-ins	that	perform
various	functions.	This	adaptability	led	to	numerous	CNI	plug-ins	that	you	can
use	in	container	networking	from	cloud	providers	like	the	Microsoft	Azure
native	CNI	and	the	Amazon	Web	Services	(AWS)	VPC	CNI	plug-in,	to
traditional	network	providers	such	as	Nuage	CNI,	Juniper	Networks
Contrail/Tunsten	Fabric,	and	VMware	NSX.

CNI	Best	Practices
Networking	is	a	critical	component	of	a	functioning	Kubernetes	environment.
The	interaction	between	the	virtual	components	within	Kubernetes	and	the
physical	network	environment	should	be	carefully	designed	to	ensure
dependable	application	communication:

1.	 Evaluate	the	feature	set	needed	to	accomplish	the	overall	networking
goals	of	the	infrastructure.	Some	CNI	plug-ins	provide	native	high
availability,	multicloud	connectivity,	Kubernetes	network	policy
support,	and	various	other	features.

2.	 If	you	are	running	clusters	via	public	cloud	providers,	verify	that	any
CNI	plug-ins	that	are	not	native	to	the	cloud	provider’s	Software-
Defined	Network	(SDN)	are	actually	supported.

3.	 Verify	that	any	network	security	tools,	network	observability,	and

https://oreil.ly/wGvF7

management	tools	are	compatible	with	the	CNI	plug-in	of	choice,	and	if
not,	research	which	tools	can	replace	the	existing	ones.	It	is	important	to
not	lose	either	observability	or	security	capabilities	because	the	needs
will	be	expanded	when	moving	to	a	large-scale	distributed	system	such
as	Kubernetes.	You	can	add	tools	like	Weaveworks	Weave	Scope,
Dynatrace,	and	Sysdig	to	any	Kubernetes	environment,	and	each	offers
its	own	benefits.	If	you’re	running	in	a	cloud	provider’s	managed
service,	such	as	Azure	AKS,	Google	GCE,	or	AWS	EKS,	look	for
native	tools	like	Azure	Container	Insights	and	Network	Watcher,
Google	Stackdriver,	and	AWS	CloudWatch.	Whatever	tool	you	use,	it
should	at	least	provide	insight	into	the	network	stack	and	the	Four
Golden	signals,	made	popular	by	the	amazing	Google	SRE	team	and
Rob	Ewashuck:	Latency,	Traffic,	Errors,	and	Saturation.

4.	 If	you’re	using	CNIs	that	do	not	provide	an	overlay	network	separate
from	the	SDN	network	space,	ensure	that	you	have	proper	network
address	space	to	handle	node	IPs,	pod	IPs,	internal	load	balancers,	and
overhead	for	cluster	upgrade	and	scale	out	processes.

Services	in	Kubernetes
When	pods	are	deployed	into	a	Kubernetes	cluster,	because	of	the	basic	rules	of
Kubernetes	networking	and	the	network	plug-in	used	to	facilitate	these	rules,
pods	can	directly	communicate	only	with	other	pods	within	the	same	cluster.
Some	CNI	plug-ins	give	the	pods	IPs	on	the	same	network	space	as	the	nodes,	so
technically,	after	the	IP	of	a	pod	is	known,	it	can	be	accessed	directly	from
outside	the	cluster.	This,	however,	is	not	an	efficient	way	to	access	services
being	served	by	a	pod,	because	of	the	ephemeral	nature	of	pods	in	Kubernetes.
Imagine	that	you	have	a	function	or	system	that	needs	to	access	an	API	that	is
running	in	a	pod	in	Kubernetes.	For	a	while,	that	might	work	with	no	issue,	but
at	some	point	there	might	be	a	voluntary	or	involuntary	disruption	that	will	cause
that	pod	to	disappear.	Kubernetes	will	potentially	create	a	replacement	pod	with
a	new	name	and	IP	address,	so	naturally	there	needs	to	be	some	mechanism	to
find	the	replacement	pod.	This	is	where	the	service	API	comes	to	the	rescue.

The	service	API	allows	for	a	durable	IP	and	port	to	be	assigned	within	the

Kubernetes	cluster	and	automatically	mapped	to	the	proper	pods	as	endpoints	to
the	service.	This	magic	happens	through	the	aforementioned	iptables	or	IPVS	on
Linux	nodes	to	create	a	mapping	of	the	assigned	service	IP	and	port	to	the
endpoint’s	or	pod’s	actual	IPs.	The	controller	that	manages	this	is	called	the
kube-proxy	service,	which	actually	runs	on	each	node	in	the	cluster.	It	is
responsible	for	manipulating	the	iptables	rules	on	each	node.

When	a	service	object	is	defined,	the	type	of	service	needs	to	be	defined.	The
service	type	will	dictate	whether	the	endpoints	are	exposed	only	within	the
cluster	or	outside	of	the	cluster.	There	are	four	basic	service	types	that	we	will
discuss	briefly	in	the	following	sections.

Service	Type	ClusterIP
ClusterIP	is	the	default	service	type	if	one	is	not	declared	in	the	specification.
ClusterIP	means	that	the	service	is	assigned	an	IP	from	a	designated	service
CIDR	range.	This	IP	is	as	long	lasting	as	the	service	object,	so	it	provides	an	IP
and	port	and	protocol	mapping	to	backend	pods	using	the	selector	field;
however,	as	we	will	see,	there	are	cases	for	which	you	can	have	no	selector.	The
declaration	of	the	service	also	provides	for	a	Domain	Name	System	(DNS)	name
for	the	service.	This	facilitates	service	discovery	within	the	cluster	and	allows
for	workloads	to	easily	communicate	to	other	services	within	the	cluster	by	using
DNS	lookup	based	on	the	service	name.	As	an	example,	if	you	have	the	service
definition	shown	in	the	following	example	and	need	to	access	that	service	from
another	pod	inside	the	cluster	via	an	HTTP	call,	the	call	can	simply	use
http://web1-svc	if	the	client	is	in	the	same	namespace	as	the	service:

apiVersion: v1
kind: Service
metadata:
 name: web1-svc
spec:
 selector:
 app: web1
 ports:
 - port: 80
 targetPort: 8081

If	it	is	required	to	find	services	in	other	namespaces,	the	DNS	pattern	would	be

http://web1-svc

<service_name>.<namespace_name>.svc.cluster.local.

If	no	selector	is	given	in	a	service	definition,	the	endpoints	can	be	explicitly
defined	for	the	service	by	using	an	endpoint	API	definition.	This	will	basically
add	an	IP	and	port	as	a	specific	endpoint	to	a	service	instead	of	relying	on	the
selector	attribute	to	automatically	update	the	endpoints	from	the	pods	that	are	in
scope	by	the	selector	match.	This	can	be	useful	in	a	few	scenarios	in	which	you
have	a	specific	database	that	is	not	in	a	cluster	that	is	to	be	used	for	testing	but
you	will	change	the	service	later	to	a	Kubernetes-deployed	database.	This	is
sometimes	called	a	headless	service	because	it	is	not	managed	by	kube-proxy	as
other	services	are,	but	you	can	directly	manage	the	endpoints,	as	shown	in
Figure	9-4.

Figure	9-4.	ClusterIPPod	and	Service	visualization

Service	Type	NodePort
The	NodePort	service	type	assigns	a	high-level	port	on	each	node	of	the	cluster
to	the	Service	IP	and	port	on	each	node.	The	high-level	NodePorts	fall	within	the
30,000	through	32,767	ranges	and	can	either	be	statically	assigned	or	explicitly
defined	in	the	service	specification.	NodePorts	are	usually	used	for	on-premises
clusters	or	bespoke	solutions	that	do	not	offer	automatic	load-balancing
configuration.	To	directly	access	the	service	from	outside	the	cluster,	use
NodeIP:NodePort,	as	depicted	in	Figure	9-5.

Figure	9-5.	NodePort–Pod,	Service	and	Host	network	visualization

Service	Type	ExternalName
The	ExternalName	service	type	is	seldom	used	in	practice,	but	it	can	be	helpful

for	passing	cluster-durable	DNS	names	to	external	DNS	named	services.	A
common	example	is	an	external	database	service	from	a	cloud	provider	that	has
a	unique	DNS	provided	by	the	cloud	provider,	such	as
mymongodb.documents.azure.com.	Technically,	this	can	be	added	very	easily
to	a	pod	specification	using	an	Environment	variable,	as	discussed	in	Chapter	6;
however,	it	might	be	more	advantageous	to	use	a	more	generic	name	in	the
cluster,	such	as	prod-mongodb,	which	enables	the	change	of	the	actual	database
it	points	to	by	just	changing	the	service	specification	instead	of	having	to	recycle
the	pods	because	the	Environment	variable	has	changed:

kind: Service
apiVersion: v1
metadata:
 name: prod-mongodb
 namespace: prod
spec:
 type: ExternalName
 externalName: mymongodb.documents.azure.com

Service	Type	LoadBalancer
LoadBalancer	is	a	very	special	service	type	because	it	enables	automation	with
cloud	providers	and	other	programmable	cloud	infrastructure	services.	The
LoadBalancer	type	is	a	single	method	to	ensure	the	deployment	of	the	load-
balancing	mechanism	that	the	infrastructure	provider	of	the	Kubernetes	cluster
provides.	This	means	that	in	most	cases,	LoadBalancer	will	work	roughly	the
same	way	in	AWS,	Azure,	GCE,	OpenStack,	and	others.	In	most	cases,	this	entry
will	create	a	public-facing	load-balanced	service;	however,	each	cloud	provider
has	some	specific	annotations	that	enable	other	features,	such	as	internal-only
load	balancers,	AWS	ELB	configuration	parameters,	and	so	on.	You	can	also
define	the	actual	load-balancer	IP	to	use	and	the	source	ranges	to	allow	within
the	service	specification,	as	seen	in	the	code	sample	that	follows	and	the	visual
representation	in	Figure	9-6:

kind: Service
apiVersion: v1
metadata:
 name: web-svc
spec:

 type: LoadBalancer
 selector:
 app: web
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8081
 loadBalancerIP: 13.12.21.31
 loadBalancerSourceRanges:
 - "142.43.0.0/16"

Figure	9-6.	LoadBalancer–Pod,	Service,	Node,	and	Cloud	Provider	network	visualization

Ingress	and	Ingress	Controllers
Although	not	technically	a	service	type	in	Kubernetes,	the	Ingress	specification
is	an	important	concept	for	ingress	to	workloads	in	Kubernetes.	Services,	as

defined	by	the	Service	API,	allow	for	a	basic	level	of	Layer	3/4	load	balancing.
The	reality	is	that	many	of	the	stateless	services	that	are	deployed	in	Kubernetes
require	a	high	level	of	traffic	management	and	usually	require	application-level
control:	more	specifically,	HTTP	protocol	management.

The	Ingress	API	is	basically	an	HTTP-level	router	that	allows	for	host-	and	path-
based	rules	to	direct	to	specific	backend	services.	Imagine	a	website	hosted	on
www.evillgenius.com	and	two	different	paths	that	are	hosted	on	that	site,
/registration	and	/labaccess,	that	are	served	by	two	different	services	hosted	in
Kubernetes,	reg-svc	and	labaccess-svc.	You	can	define	an	ingress	rule	to
ensure	that	requests	to	www.evillgenius/registration	are	forwarded	to	the	reg-
svc	service	and	the	correct	endpoint	pods,	and,	similarly,	that	requests	to
www.evillgenius.com/labaccess	are	forwarded	to	the	correct	endpoints	of	the
labaccess-svc	service.	The	Ingress	API	also	allows	for	host-based	routing	to
allow	for	different	hosts	on	a	single	ingress.	An	additional	feature	is	the	ability	to
declare	a	Kubernetes	secret	that	holds	the	certificate	information	for	Transport
Layer	Security	(TLS)	termination	on	port	443.	When	a	path	is	not	specified,
there	is	usually	a	default	backend	that	can	be	used	to	give	a	better	user
experience	than	the	standard	404	error.

The	details	around	the	specific	TLS	and	default	backend	configuration	are
actually	handled	by	what	is	known	as	the	Ingress	controller.	The	Ingress
controller	is	decoupled	from	the	Ingress	API	and	allows	for	operators	to	deploy
an	Ingress	controller	of	choice,	such	as	NGINX,	Traefik,	HAProxy,	and	others.
An	Ingress	controller,	as	the	name	suggests,	is	a	controller,	just	like	any
Kubernetes	controller,	but	it’s	not	part	of	the	system	and	is	instead	a	third-party
controller	that	understands	the	Kubernetes	Ingress	API	for	dynamic
configuration.	The	most	common	implementation	of	an	Ingress	controller	is
NGINX	because	it	is	partly	maintained	by	the	Kubernetes	project;	however,
there	are	numerous	examples	of	both	open	source	and	commercial	Ingress
controllers:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: labs-ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /

spec:
 tls:
 - hosts:
 - www.evillgenius.com
 secretName: secret-tls
 rules:
 - host: www.evillgenius.com
 http:
 paths:
 - path: /registration
 backend:
 serviceName: reg-svc
 servicePort: 8088
 - path: /labaccess
 backend:
 serviceName: labaccess-svc
 servicePort: 8089

Services	and	Ingress	Controllers	Best	Practices
Creating	a	complex	virtual	network	environment	with	interconnected
applications	requires	careful	planning.	Effectively	managing	how	the	different
services	of	the	application	communicate	with	one	another	and	to	the	outside
world	requires	constant	attention	as	the	application	changes.	These	best	practices
will	help	make	the	management	easier:

Limit	the	number	of	services	that	need	to	be	accessed	from	outside	the
cluster.	Ideally,	most	services	will	be	ClusterIP,	and	only	external-facing
services	will	be	exposed	externally	to	the	cluster.

If	the	services	that	need	to	be	exposed	are	primarily	HTTP/HTTPS-
based	services,	it	is	best	to	use	an	Ingress	API	and	Ingress	controller	to
route	traffic	to	backing	services	with	TLS	termination.	Depending	on
the	type	of	Ingress	controller	used,	features	such	as	rate	limiting,	header
rewrites,	OAuth	authentication,	observability,	and	other	services	can	be
made	available	without	having	to	build	them	into	the	applications
themselves.

Choose	an	Ingress	controller	that	has	the	needed	functionality	for	secure
ingress	of	your	web-based	workloads.	Standardize	on	one	and	use	it
across	the	enterprise	because	many	of	the	specific	configuration
annotations	vary	between	implementations	and	prevent	the	deployment

code	from	being	portable	across	enterprise	Kubernetes	implementations.

Evaluate	cloud	service	provider-specific	Ingress	controller	options	to
move	the	infrastructure	management	and	load	of	the	ingress	out	of	the
cluster,	but	still	allow	for	Kubernetes	API	configuration.

When	serving	mostly	APIs	externally,	evaluate	API-specific	Ingress
controllers,	such	as	Kong	or	Ambassador,	that	have	more	fine-tuning	for
API-based	workloads.	Although	NGINX,	Traefik,	and	others	might
offer	some	API	tuning,	it	will	not	be	as	fine-grained	as	specific	API
proxy	systems.

When	deploying	Ingress	controllers	as	pod-based	workloads	in
Kubernetes,	ensure	that	the	deployments	are	designed	for	high
availability	and	aggregate	performance	throughput.	Use	metrics
observability	to	properly	scale	the	ingress,	but	include	enough	cushion
to	prevent	client	disruptions	while	the	workload	scales.

Network	Security	Policy
The	NetworkPolicy	API	built	into	Kubernetes	allows	for	network-level	ingress
and	egress	access	control	defined	with	your	workload.	Network	policies	allow
you	to	control	how	groups	of	pods	are	allowed	to	communicate	with	one	another
and	with	other	endpoints.	If	you	want	to	dig	deeper	into	the	NetworkPolicy
specification,	it	might	sound	confusing,	especially	given	that	it	is	defined	as	a
Kubernetes	API,	but	it	requires	a	network	plug-in	that	supports	the
NetworkPolicy	API.

Network	policies	have	a	simple	YAML	structure	that	can	look	complicated,	but
if	you	think	of	it	as	a	simple	East-West	traffic	firewall,	it	might	help	you	to
understand	it	a	little	better.	Each	policy	specification	has	podSelector,
ingress,	egress,	and	policyType	fields.	The	only	required	field	is
podSelector,	which	follows	the	same	convention	as	any	Kubernetes	selector
with	a	matchLabels.	You	can	create	multiple	NetworkPolicy	definitions	that	can
target	the	same	pods,	and	the	effect	is	additive	in	nature.	Because	NetworkPolicy
objects	are	namespaced	objects,	if	no	selector	is	given	for	a	podSelector,	all
pods	in	the	namespace	fall	into	the	scope	of	the	policy.	If	there	are	any	ingress	or

egress	rules	defined,	this	creates	a	whitelist	of	what	is	allowed	to	or	from	the
pod.	There	is	an	important	distinction	here:	if	a	pod	falls	into	the	scope	of	a
policy	because	of	a	selector	match,	all	traffic,	unless	explicitly	defined	in	an
ingress	or	egress	rule,	is	blocked.	This	little,	nuanced	detail	means	that	if	a	pod
does	not	fall	into	any	policy	because	of	a	selector	match,	all	ingress	and	egress	is
allowed	to	the	pod.	This	was	done	on	purpose	to	allow	for	ease	of	deploying	new
workloads	into	Kubernetes	without	any	blockers.

The	ingress	and	egress	fields	are	basically	a	list	of	rules	based	on	source	or
destination	and	can	be	specific	CIDR	ranges,	podSelectors,	or
namespaceSelectors.	If	you	leave	the	ingress	field	empty,	it	is	like	a	deny-all
inbound.	Similarly,	if	you	leave	the	egress	empty,	it	is	deny-all	outbound.	Port
and	protocol	lists	are	also	supported	to	further	tighten	down	the	type	of
communications	allowed.

The	policyTypes	field	specifies	to	which	network	policy	rule	types	the	policy
object	is	associated.	If	the	field	is	not	present,	it	will	just	look	at	the	ingress	and
egress	lists	fields.	The	difference	again	is	that	you	must	explicitly	call	out
egress	in	policyTypes	and	also	have	an	egress	rule	list	for	this	policy	to	work.
Ingress	is	assumed,	and	defining	it	explicitly	is	not	needed.

Let’s	use	a	prototypical	example	of	a	three-tier	application	deployed	to	a	single
namespace	where	the	tiers	are	labeled	as	tier: "web",	tier: "db",	and	tier:
"api".	If	you	want	to	ensure	that	traffic	is	limited	to	each	tier	properly,	create	a
NetworkPolicy	manifest	like	this:

Default	deny	rule:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny-all
spec:
 podSelector: {}
 policyTypes:
 - Ingress

Web	layer	network	policy:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy
metadata:
 name: webaccess
spec:
 podSelector:
 matchLabels:
 tier: "web"
 policyTypes:
 - Ingress
 ingress:
 - {}

API	layer	network	policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-api-access
spec:
 podSelector:
 matchLabels:
 tier: "api"
 policyTypes:
 - Ingress
 ingress:
 - from:
 - podSelector:
 matchLabels:
 tier: "web"

Database	layer	network	policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-db-access
spec:
 podSelector:
 matchLabels:
 tier: "db"
 policyTypes:
 - Ingress
 ingress:
 - from:
 - podSelector:
 matchLabels:
 tier: "api"

Network	Policy	Best	Practices
Securing	network	traffic	in	an	enterprise	system	was	once	the	domain	of
physical	hardware	devices	with	complex	networking	rule	sets.	Now,	with
Kubernetes	network	policy,	a	more	application-centric	approach	can	be	taken	to
segment	and	control	the	traffic	of	the	applications	hosted	in	Kubernetes.	Some
common	best	practices	apply	no	matter	which	policy	plug-in	used:

Start	off	slow	and	focus	on	traffic	ingress	to	pods.	Complicating	matters
with	ingress	and	egress	rules	can	make	network	tracing	a	nightmare.	As
soon	as	traffic	is	flowing	as	expected,	you	can	begin	to	look	at	egress
rules	to	further	control	flow	to	sensitive	workloads.	The	specification
also	favors	ingress	because	it	defaults	many	options	even	if	nothing	is
entered	into	the	ingress	rules	list.

Ensure	that	the	network	plug-in	used	either	has	some	of	its	own
interface	to	the	NetworkPolicy	API	or	supports	other	well-known	plug-
ins.	Example	plug-ins	include	Calico,	Cilium,	Kube-router,	Romana,
and	Weave	Net.

If	the	network	team	is	used	to	having	a	“default-deny”	policy	in	place,
create	a	network	policy	such	as	the	following	for	each	namespace	in	the
cluster	that	will	contain	workloads	to	be	protected.	This	ensures	that
even	if	another	network	policy	is	deleted,	no	pods	are	accidentally
“exposed”:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny-all
spec:
 podSelector: {}
 policyTypes:
 - Ingress

4.	 If	there	are	pods	that	need	to	be	accessed	from	the	internet,	use	a	label
to	explicitly	apply	a	network	policy	that	allows	ingress.	Be	aware	of	the
entire	flow	in	case	the	actual	IP	that	a	packet	is	coming	from	is	not	the
internet,	but	the	internal	IP	of	a	load	balancer,	firewall,	or	other	network
device.	For	example,	to	allow	traffic	from	all	(including	external)

sources	for	pods	having	the	allow-internet=true	label,	do	this:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: internet-access
spec:
 podSelector:
 matchLabels:
 allow-internet: "true"
 policyTypes:
 - Ingress
 ingress:
 - {}

5.	 Try	to	align	application	workloads	to	single	namespaces	for	ease	of
creating	rules	because	the	rules	themselves	are	namespace	specific.	If
cross-namespace	communication	is	needed,	try	to	be	as	explicit	as
possible	and	perhaps	use	specific	labels	to	identify	the	flow	pattern:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: namespace-foo-2-namespace-bar
 namespace: bar
spec:
 podSelector:
 matchLabels:
 app: bar-app
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 networking/namespace: foo
 podSelector:
 matchLabels:
 app: foo-app

6.	 Have	a	test	bed	namespace	that	has	fewer	restrictive	policies,	if	any	at
all,	to	allow	time	to	investigate	the	correct	traffic	patterns	needed.

Service	Meshes
It	is	easy	to	imagine	a	single	cluster	hosting	hundreds	of	services	that	load-
balance	across	thousands	of	endpoints	that	communicate	with	one	another,
access	external	resources,	and	potentially	are	being	accessed	from	external
sources.	This	can	be	quite	daunting	when	trying	to	manage,	secure,	observe,	and
trace	all	of	the	connections	between	these	services,	especially	with	the	dynamic
nature	of	the	endpoints	coming	and	going	from	the	overall	system.	The	concept
of	a	service	mesh,	which	is	not	unique	to	Kubernetes,	allows	for	control	over
how	these	services	are	connected	and	secured	with	a	dedicated	date	plane	and
control	plane.	Service	meshes	all	have	different	capabilities,	but	usually	they	all
offer	some	of	the	following:

Load	balancing	of	traffic	with	potentially	fine-grained	traffic-shaping
policies	that	are	distributed	across	the	mesh.

Service	discovery	of	services	that	are	members	of	the	mesh,	which
might	include	services	within	a	cluster	or	in	another	cluster,	or	an
outside	system	that	is	a	member	of	the	mesh.

Observability	of	the	traffic	and	services,	including	tracing	across	the
distributed	services	using	tracing	systems	like	Jaeger	or	Zipkin	that
follow	the	OpenTracing	standards.

Security	of	the	traffic	in	the	mesh	using	mutual	authentication.	In	some
cases,	not	only	pod-to-pod	or	East-West	traffic	is	secured,	but	an	Ingress
controller	is	also	provided	that	offers	North-South	security	and	control.

Resiliency,	health,	and	failure-prevention	capabilities	that	allow	for
patterns	such	as	circuit	breaker,	retries,	deadlines,	and	so	on.

The	key	here	is	that	all	of	these	features	are	integrated	into	the	applications	that
take	part	in	the	mesh	with	little	or	no	application	changes.	How	can	all	of	these
amazing	features	come	for	free?	Sidecar	proxies	are	usually	the	way	this	is	done.
The	majority	of	service	meshes	available	today	inject	a	proxy	that	is	part	of	the
data	plane	into	each	pod	that	is	a	member	of	the	mesh.	This	allows	for	policies
and	security	to	be	synchronized	across	the	mesh	by	the	control-plane
components.	This	really	hides	the	network	details	from	the	container	that	holds
the	workload	and	leaves	it	to	the	proxy	to	handle	the	complexity	of	the

distributed	network.	To	the	application,	it	just	talks	via	localhost	to	its	proxy.	In
many	cases,	the	control	plane	and	data	plane	might	be	different	technologies	but
complementary	to	each	other.

In	many	cases,	the	first	service	mesh	that	comes	to	mind	is	Istio,	a	project	by
Google,	Lyft,	and	IBM	that	uses	Envoy	as	its	data-plane	proxy	and	uses
proprietary	control-plane	components	Mixer,	Pilot,	Galley,	and	Citadel.	There
are	other	service	meshes	that	offer	varying	levels	of	capabilities,	such	as
Linkerd2,	which	uses	its	own	data-plane	proxy	built	using	Rust.	HashiCorp	has
recently	added	more	Kubernetes-centric	service	mesh	capabilities	to	Consul,
which	allows	you	to	choose	between	Consul’s	own	proxy	or	Envoy,	and	offers
commercial	support	for	its	service	mesh.

The	topic	of	service	meshes	in	Kubernetes	is	a	fluid	one—if	not	overly
emotional	in	many	social	media	tech	circles—so	a	detailed	explanation	of	each
mesh	has	no	value	here.	I	would	be	remiss	if	I	did	not	mention	the	promising
efforts	lead	by	Microsoft,	Linkerd,	HashiCorp,	Solo.io,	Kinvolk,	and
Weaveworks	around	the	Service	Mesh	Interface	(SMI).	The	SMI	hopes	to	set	a
standard	interface	for	basic	feature	sets	that	are	expected	of	all	service	meshes.
The	specification	as	of	this	writing	covers	traffic	policy	such	as	identity	and
transport-level	encryption,	traffic	telemetry	that	captures	key	metrics	between
services	in	the	mesh,	and	traffic	management	to	allow	for	traffic	shifting	and
weighting	between	different	services.	This	project	hopes	to	take	some	of	the
variability	out	of	the	service	meshes	yet	allow	for	service	mesh	vendors	to
extend	and	build	value-added	capabilities	into	their	products	to	differentiate
themselves	from	others.

Service	Mesh	Best	Practices
The	service	mesh	community	continues	to	grow	every	day,	and	as	more	and
more	enterprises	help	define	their	needs,	the	service	mesh	ecosystem	will	change
dramatically.	These	best	practices	are,	as	of	this	writing,	based	on	common
necessities	that	service	meshes	try	to	solve	today:

Rate	the	importance	of	the	key	features	service	meshes	offer	and
determine	which	current	offerings	provide	the	most	important	features
with	the	least	amount	of	overhead.	Overhead	here	is	both	human

technical	debt	and	infrastructure	resource	debt.	If	all	that	is	really
required	is	mutual	TLS	between	certain	pods,	would	it	be	easier	to
perhaps	find	a	CNI	that	offers	that	integrated	into	the	plug-in?

Is	the	need	for	a	cross-system	mesh	such	as	multicloud	or	hybrid
scenarios	a	key	requirement?	Not	all	service	meshes	offer	this
capability,	and	if	they	do,	it	is	a	complicated	process	that	often
introduces	fragility	into	the	environment.

Many	of	the	service	mesh	offerings	are	open	source	community-based
projects,	and	if	the	team	that	will	be	managing	the	environment	is	new
to	service	meshes,	commercially	supported	offerings	might	be	a	better
option.	There	are	companies	that	are	beginning	to	offer	commercially
supported	and	managed	service	meshes	based	on	Istio,	which	can	be
helpful	because	it	is	almost	universally	agreed	upon	that	Istio	is	a
complicated	system	to	manage.

Summary
In	addition	to	application	management,	one	of	the	most	important	things	that
Kubernetes	provides	is	the	ability	to	link	different	pieces	of	your	application
together.	In	this	chapter,	we	looked	at	the	details	of	how	Kubernetes	works,
including	how	pods	get	their	IP	addresses	through	CNI	plug-ins,	how	those	IPs
are	grouped	together	to	form	services,	and	how	more	application	or	Layer	7
routing	can	be	implemented	via	Ingress	resources	(which	in	turn	use	services).
You	also	saw	how	to	limit	traffic	and	secure	your	network	using	networking
policies,	and,	finally,	how	service	mesh	technologies	are	transforming	the	ways
in	which	people	connect	and	monitor	the	connections	between	their	services.	In
addition	to	setting	up	your	application	to	run	and	be	deployed	reliably,	setting	up
the	networking	for	your	application	is	a	crucial	piece	of	using	Kubernetes
successfully.	Understanding	how	Kubernetes	approaches	networking	and	how
that	intersects	optimally	with	your	application	is	a	critical	piece	of	its	ultimate
success.

Chapter	10.	Pod	and	Container
Security

When	it	comes	to	pod	security	via	the	Kubernetes	API,	you	have	two	main
options	at	your	disposal:	PodSecurityPolicy	and	RuntimeClass.	In	this	chapter,
we	review	the	purpose	and	use	of	each	API	and	provide	best	practices	for	their
use.

PodSecurityPolicy	API

NOTE
The	PodSecurityPolicy	API	is	under	active	development.	As	of	Kubernetes	1.15,	this	API	was
in	beta.	Please	visit	the	upstream	documentation	for	the	latest	updates	on	the	feature	state.

This	cluster-wide	resource	creates	a	single	place	to	define	and	manage	all	of	the
security-sensitive	fields	found	in	pod	specifications.	Prior	to	the	creation	of	the
PodSecurityPolicy	resource,	cluster	administrators	and/or	users	would	need	to
independently	define	individual	SecurityContext	settings	for	their	workloads
or	enable	bespoke	admission	controllers	on	the	cluster	to	enforce	some	aspects
of	pod	security.

Does	all	of	this	sound	too	easy?	PodSecurityPolicy	is	surprisingly	difficult	to
implement	effectively	and	will	more	often	than	not	get	turned	off	or	evaded	in
other	ways.	We	do,	however,	strongly	suggest	taking	the	time	to	fully	understand
PodSecurityPolicy	because	it’s	one	of	the	single	most	effective	means	to	reduce
your	attack	surface	area	by	limiting	what	can	run	on	your	cluster	and	with	what
level	of	privilege.

Enabling	PodSecurityPolicy
Along	with	the	resource	API,	a	corresponding	admission	controller	must	be

https://oreil.ly/7UOWx

enabled	to	enforce	the	conditions	defined	in	the	PodSecurityPolicy	resource.
This	means	that	the	enforcement	of	these	policies	happens	at	the	admission
phase	of	the	request	flow.	To	learn	more	about	how	admission	controllers	work,
refer	to	Chapter	17.

It’s	worth	mentioning	that	enabling	PodSecurityPolicy	is	not	widely	available
among	public	cloud	providers	and	cluster	operations	tools.	In	the	cases	for	which
it	is	available,	it’s	generally	shipped	as	an	opt-in	feature.

WARNING
Proceed	with	caution	when	enabling	PodSecurityPolicy	because	it’s	potentially	workload
blocking	if	adequate	preparation	isn’t	done	at	the	outset.

There	are	two	main	components	that	you	need	to	complete	in	order	to	start	using
PodSecurityPolicy:

1.	 Ensure	that	the	PodSecurityPolicy	API	is	enabled	(this	should	already
be	done	if	you’re	on	a	currently	supported	version	of	Kubernetes).

You	can	confirm	that	this	API	is	enabled	by	running	kubectl get psp.
As	long	as	the	response	isn’t	the server doesn't have a resource
type "PodSecurityPolicies,	you	are	OK	to	proceed.

2.	 Enable	the	PodSecurityPolicy	admission	controller	via	the	api-server
flag --enable-admission-plugins.

WARNING
If	you	are	enabling	PodSecurityPolicy	on	an	existing	cluster	with	running	workloads,	you	must
create	all	necessary	policies,	service	accounts,	roles,	and	role	bindings	before	enabling	the
admission	controller.

We	also	recommend	the	addition	of	the	--use-service-account-
credentials=true	flag	to	kube-controller-manager,	which	will	enable
service	accounts	to	be	used	for	each	individual	controller	within	kube-

controller-manager.	This	allows	for	more	granular	policy	control	even	within
the	kube-system	namespace.	You	can	simply	run	the	following	command	to
determine	whether	the	flag	has	been	set.	It	demonstrates	that	there	is	indeed	a
service	account	per	controller:

$ kubectl get serviceaccount -n kube-system | grep '.*-controller'
attachdetach-controller 1 6d13h
certificate-controller 1 6d13h
clusterrole-aggregation-controller 1 6d13h
cronjob-controller 1 6d13h
daemon-set-controller 1 6d13h
deployment-controller 1 6d13h
disruption-controller 1 6d13h
endpoint-controller 1 6d13h
expand-controller 1 6d13h
job-controller 1 6d13h
namespace-controller 1 6d13h
node-controller 1 6d13h
pv-protection-controller 1 6d13h
pvc-protection-controller 1 6d13h
replicaset-controller 1 6d13h
replication-controller 1 6d13h
resourcequota-controller 1 6d13h
service-account-controller 1 6d13h
service-controller 1 6d13h
statefulset-controller 1 6d13h
ttl-controller 1 6d13h

WARNING
It’s	extremely	important	to	remember	that	having	no	PodSecurityPolicies	defined	will	result	in
an	implicit	deny.	This	means	that	without	a	policy	match	for	the	workload,	the	pod	will	not	be
created.

Anatomy	of	a	PodSecurityPolicy
To	best	understand	how	PodSecurityPolicy	enables	you	to	secure	your	pods,	let’s
work	through	an	end-to-end	example	together.	This	will	help	solidify	the	order
of	operations	from	policy	creation	through	use.

Before	you	continue,	the	following	section	requires	that	your	cluster	have
PodSecurityPolicy	enabled	in	order	for	it	to	work.	To	see	how	to	enable	it,	refer

to	the	previous	section.

WARNING
You	should	not	enable	PodSecurityPolicy	on	a	live	cluster	without	considering	the	warnings
provided	in	the	previous	section.	Proceed	with	caution.

Let’s	first	test	the	experience	without	making	any	changes	or	creating	any
policies.	The	following	is	a	test	workload	that	simply	runs	the	trusty	pause
container	in	a	Deployment	(save	this	file	as	pause-deployment.yaml	on	your
local	filesystem	for	use	throughout	this	section):

apiVersion: apps/v1
kind: Deployment
metadata:
 name: pause-deployment
 namespace: default
 labels:
 app: pause
spec:
 replicas: 1
 selector:
 matchLabels:
 app: pause
 template:
 metadata:
 labels:
 app: pause
 spec:
 containers:
 - name: pause
 image: k8s.gcr.io/pause

By	running	the	following	command,	you	can	verify	that	you	have	a	Deployment
and	a	corresponding	ReplicaSet	but	NO	pod:

$ kubectl get deploy,rs,pods -l app=pause
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.extensions/pause-delpoyment 0/1 0 0 41s

NAME DESIRED CURRENT READY AGE
replicaset.extensions/pause-delpoyment-67b77c4f69 1 0 0 41s

If	you	describe	the	ReplicaSet,	you	can	confirm	the	cause	from	the	event	log:

$ kubectl describe replicaset -l app=pause
Name: pause-delpoyment-67b77c4f69
Namespace: default
Selector: app=pause,pod-template-hash=67b77c4f69
Labels: app=pause
 pod-template-hash=67b77c4f69
Annotations: deployment.kubernetes.io/desired-replicas: 1
 deployment.kubernetes.io/max-replicas: 2
 deployment.kubernetes.io/revision: 1
Controlled By: Deployment/pause-delpoyment
Replicas: 0 current / 1 desired
Pods Status: 0 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=pause
 pod-template-hash=67b77c4f69
 Containers:
 pause:
 Image: k8s.gcr.io/pause
 Port: <none>
 Host Port: <none>
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 ReplicaFailure True FailedCreate
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedCreate 45s (x15 over 2m7s) replicaset-controller Error creating:
pods "pause-delpoyment-67b77c4f69-" is forbidden: unable to validate against any pod
security policy: []

This	is	because	there	are	either	no	pod	security	policies	defined	or	the	service
account	is	not	allowed	access	to	use	the	PodSecurityPolicy.	You	might	have	also
noticed	that	all	of	the	system	pods	in	the	kube-system	namespace	are	probably
still	in	RUNNING	state.	This	is	because	these	requests	have	already	passed	the
admission	phase	for	the	request.	If	there	were	an	event	that	restarted	these	pods,
they	would	also	suffer	the	same	fate	as	our	test	workload	given	that	there	are	no
PodSecurityPolicy	resources	defined:

replicaset-controller Error creating: pods "pause-delpoyment-67b77c4f69-" is

forbidden: unable to validate against any pod security policy: []

Let’s	delete	the	test	workload	deployment:

$ kubectl delete deploy -l app=pause
deployment.extensions "pause-delpoyment" deleted

Now,	let’s	go	fix	this	by	defining	pod	security	policies.	For	a	complete	list	of
policy	settings,	refer	to	the	Kubernetes	documentation.	The	following	policies
are	basic	variations	of	the	examples	provided	in	the	Kubernetes	documentation.

Call	the	first	policy	privileged,	which	we	use	to	demonstrate	how	to	allow
privileged	workloads.	You	can	apply	the	following	resources	by	using	kubectl
create -f <filename>:

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: privileged
spec:
 privileged: true
 allowPrivilegeEscalation: true
 allowedCapabilities:
 - '*'
 volumes:
 - '*'
 hostNetwork: true
 hostPorts:
 - min: 0
 max: 65535
 hostIPC: true
 hostPID: true
 runAsUser:
 rule: 'RunAsAny'
 seLinux:
 rule: 'RunAsAny'
 supplementalGroups:
 rule: 'RunAsAny'
 fsGroup:
 rule: 'RunAsAny'

The	next	policy	defines	restricted	access	and	will	suffice	for	many	workloads
apart	from	those	responsible	for	running	Kubernetes	cluster-wide	services	such
as	kube-proxy,	located	in	the	kube-system	namespace:

https://oreil.ly/AsuVb/

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: restricted
spec:
 privileged: false
 allowPrivilegeEscalation: false
 requiredDropCapabilities:
 - ALL
 volumes:
 - 'configMap'
 - 'emptyDir'
 - 'projected'
 - 'secret'
 - 'downwardAPI'
 - 'persistentVolumeClaim'
 hostNetwork: false
 hostIPC: false
 hostPID: false
 runAsUser:
 rule: 'RunAsAny'
 seLinux:
 rule: 'RunAsAny'
 supplementalGroups:
 rule: 'MustRunAs'
 ranges:
 - min: 1
 max: 65535
 fsGroup:
 rule: 'MustRunAs'
 ranges:
 - min: 1
 max: 65535
 readOnlyRootFilesystem: false

You	can	confirm	that	the	policies	have	been	created	by	running	the	following
command:

$ kubectl get psp
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
READONLYROOTFS VOLUMES
privileged true * RunAsAny RunAsAny RunAsAny RunAsAny
false *
restricted false RunAsAny MustRunAsNonRoot MustRunAs MustRunAs
false
configMap,emptyDir,projected,secret,downwardAPI,persistentVolumeClaim

Now	that	we	have	defined	these	policies,	we	need	to	grant	the	service	accounts
access	to	use	these	policies	via	Role-Based	Access	Control	(RBAC).

First,	create	the	following	ClusterRole	that	allows	access	to	use	the	restricted
PodSecurityPolicy	that	we	created	in	the	previous	step:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: psp-restricted
rules:
- apiGroups:
 - extensions
 resources:
 - podsecuritypolicies
 resourceNames:
 - restricted
 verbs:
 - use

Now,	create	the	following	ClusterRole	that	allows	access	to	use	the	privileged
PodSecurityPolicy	we	created	in	the	previous	step:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: psp-privileged
rules:
- apiGroups:
 - extensions
 resources:
 - podsecuritypolicies
 resourceNames:
 - privileged
 verbs:
 - use

We	must	now	create	a	corresponding	ClusterRoleBinding	that	allows	the
system:serviceaccounts	group	access	to	psp-restricted	ClusterRole.
This	group	includes	all	of	the	kube-controller-manager	controller	service
accounts:

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: psp-restricted
subjects:
- kind: Group
 name: system:serviceaccounts
 namespace: kube-system
roleRef:
 kind: ClusterRole
 name: psp-restricted
 apiGroup: rbac.authorization.k8s.io

Go	ahead	and	create	the	test	workload	again.	You	can	see	that	the	pod	is	now	up
and	running:

$ kubectl create -f pause-deployment.yaml
deployment.apps/pause-deployment created
$ kubectl get deploy,rs,pod
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.extensions/pause-deployment 1/1 1 1 10s

NAME DESIRED CURRENT READY AGE
replicaset.extensions/pause-deployment-67b77c4f69 1 1 1 10s

NAME READY STATUS RESTARTS AGE
pod/pause-deployment-67b77c4f69-4gmdn 1/1 Running 0 9s

Update	the	test	workload	deployment	to	violate	the	restricted	policy.	Adding
privileged=true	should	do	the	trick.	Save	this	manifest	as	pause-privileged-
deployment.yaml	on	your	local	filesystem	and	then	apply	it	by	using	kubectl
apply -f <filename>:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: pause-privileged-deployment
 namespace: default
 labels:
 app: pause
spec:
 replicas: 1
 selector:
 matchLabels:
 app: pause
 template:

 metadata:
 labels:
 app: pause
 spec:
 containers:
 - name: pause
 image: k8s.gcr.io/pause
 securityContext:
 privileged: true

Again,	you	can	see	that	both	the	Deployment	and	the	ReplicaSet	have	been
created;	however,	the	pod	has	not.	You	can	find	the	details	of	why	in	the	event
log	of	the	ReplicaSet:

$ kubectl create -f pause-privileged-deployment.yaml
deployment.apps/pause-privileged-deployment created
$ kubectl get deploy,rs,pods -l app=pause
NAME READY UP-TO-DATE AVAILABLE
AGE
deployment.extensions/pause-privileged-deployment 0/1 0 0
37s

NAME DESIRED CURRENT
READY AGE
replicaset.extensions/pause-privileged-deployment-6b7bcfb9b7 1 0 0
37s
$ kubectl describe replicaset -l app=pause
Name: pause-privileged-deployment-6b7bcfb9b7
Namespace: default
Selector: app=pause,pod-template-hash=6b7bcfb9b7
Labels: app=pause
 pod-template-hash=6b7bcfb9b7
Annotations: deployment.kubernetes.io/desired-replicas: 1
 deployment.kubernetes.io/max-replicas: 2
 deployment.kubernetes.io/revision: 1
Controlled By: Deployment/pause-privileged-deployment
Replicas: 0 current / 1 desired
Pods Status: 0 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=pause
 pod-template-hash=6b7bcfb9b7
 Containers:
 pause:
 Image: k8s.gcr.io/pause
 Port: <none>
 Host Port: <none>
 Environment: <none>
 Mounts: <none>

 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 ReplicaFailure True FailedCreate
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedCreate 78s (x15 over 2m39s) replicaset-controller Error
creating: pods "pause-privileged-deployment-6b7bcfb9b7-" is forbidden: unable to
validate against any pod security policy:
[spec.containers[0].securityContext.privileged: Invalid value: true: Privileged
containers are not allowed]

The	preceding	example	shows	the	exact	reason	why:	Privileged containers
are not allowed.	Let’s	delete	the	test	workload	deployment.

$ kubectl delete deploy pause-privileged-deployment
deployment.extensions "pause-privileged-deployment" deleted

So	far,	we’ve	dealt	only	with	cluster-level	bindings.	How	about	we	allow	the	test
workload	access	to	the	privileged	policy	using	a	service	account.

First,	create	a	serviceaccount	in	the	default	namespace:

$ kubectl create serviceaccount pause-privileged
serviceaccount/pause-privileged created

Bind	that	serviceaccount	to	the	permissive	ClusterRole.	Save	this	manifest
as	role-pause-privileged-psp-permissive.yaml	on	your	local	filesystem	and	then
apply	it	by	using	kubectl	apply	-f	<filename>:

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
 name: pause-privileged-psp-permissive
 namespace: default
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: psp-privileged
subjects:
- kind: ServiceAccount
 name: pause-privileged

 namespace: default

Finally,	update	the	test	workload	to	use	the	pause-privileged	service	account.
Then	apply	it	to	the	cluster	using	kubectl	apply:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: pause-privileged-deployment
 namespace: default
 labels:
 app: pause
spec:
 replicas: 1
 selector:
 matchLabels:
 app: pause
 template:
 metadata:
 labels:
 app: pause
 spec:
 containers:
 - name: pause
 image: k8s.gcr.io/pause
 securityContext:
 privileged: true
 serviceAccountName: pause-privileged

You	can	see	that	the	pod	is	now	able	to	use	the	privileged	policy:

$ kubectl create -f pause-privileged-deployment.yaml
deployment.apps/pause-privileged-deployment created
$ kubectl get deploy,rs,pod
NAME READY UP-TO-DATE AVAILABLE
AGE
deployment.extensions/pause-privileged-deployment 1/1 1 1
14s

NAME DESIRED CURRENT
READY AGE
replicaset.extensions/pause-privileged-deployment-658dc5569f 1 1 1
14s

NAME READY STATUS RESTARTS AGE
pod/pause-privileged-deployment-658dc5569f-nslnw 1/1 Running 0 14s

TIP
You	can	see	which	PodSecurityPolicy	was	matched	by	using	the	following	command:

$ kubectl get pod -l app=pause -o yaml | grep psp
 kubernetes.io/psp: privileged

PodSecurityPolicy	Challenges
Now	that	you	understand	how	to	configure	and	use	PodSecurityPolicy,	it’s	worth
noting	that	there	are	quite	a	few	challenges	with	using	it	in	real-world
environments.	In	this	section,	we	describe	things	that	we	have	experienced	that
make	it	challenging.

Reasonable	default	policies
The	real	power	of	PodSecurityPolicy	is	to	enable	the	cluster	administrator	and/or
user	to	ensure	that	their	workloads	meet	a	certain	level	of	security.	In	practice,
you	might	often	overlook	just	how	many	workloads	run	as	root,	use	hostPath
volumes,	or	have	other	risky	settings	that	force	you	to	craft	policies	with	security
holes	just	to	get	the	workloads	up	and	running.

Lots	of	toil
Getting	the	policies	just	right	is	a	large	investment,	especially	where	there	is	a
large	set	of	workloads	already	running	on	Kubernetes	without	PodSecurityPolicy
enabled.

Are	your	developers	interested	in	learning	PodSecurityPolicy?
Will	your	developers	want	to	learn	PodSecurityPolicy?	What	would	be	the
incentive	for	them	to	do	so?	Without	a	lot	of	up	front	coordination	and
automation	to	make	enabling	PodSecurityPolicy	a	smooth	transition,	it’s	very
likely	that	PodSecurityPolicy	won’t	be	adopted	at	all.

Debugging	is	cumbersome
It’s	difficult	to	troubleshoot	policy	evaluation.	For	example,	you	might	want	to

understand	why	your	workload	matched	or	didn’t	match	a	specific	policy.
Tooling	or	logging	to	make	that	easy	doesn’t	exist	at	this	stage.

Do	you	rely	on	artifacts	outside	your	control?
Are	you	pulling	images	from	Docker	Hub	or	another	public	repository?	Chances
are	they	will	violate	your	policies	in	some	shape	or	form	and	will	be	out	of	your
control	to	fix.	Another	common	place	is	Helm	charts:	do	they	ship	with	the
appropriate	policies	in	place?

PodSecurityPolicy	Best	Practices
PodSecurityPolicy	is	complex	and	can	be	error	prone.	Refer	to	the	following
best	practices	before	implementing	PodSecurityPolicy	on	your	clusters:

It	all	comes	down	to	RBAC.	Whether	you	like	it	or	not,
PodSecurityPolicy	is	determined	by	RBAC.	It’s	this	relationship	that
actually	exposes	all	of	the	shortcomings	in	your	current	RBAC	policy
design.	We	cannot	stress	just	how	important	it	is	to	automate	your
RBAC	and	PodSecurityPolicy	creation	and	maintenance.	Specifically
locking	down	access	to	service	accounts	is	the	key	to	using	policy.

Understand	the	policy	scope.	Determining	how	your	policies	will	be
laid	out	on	your	cluster	is	very	important.	Your	policies	can	be	cluster-
wide,	namespaced,	or	workload-specific	in	scope.	There	will	always	be
workloads	on	your	cluster	that	are	part	of	the	Kubernetes	cluster
operations	that	will	need	more	permissive	security	privileges,	so	make
sure	that	you	have	appropriate	RBAC	in	place	to	stop	unwanted
workloads	using	your	permissive	policies.

Do	you	want	to	enable	PodSecurityPolicy	on	an	existing	cluster?	Use
this	handy	open	source	tool	to	generate	policies	based	on	your	current
resources.	This	is	a	great	start.	From	there,	you	can	hone	your	policies.

PodSecurityPolicy	Next	Steps
As	demonstrated,	PodSecurityPolicy	is	an	extremely	powerful	API	to	assist	in
keeping	your	cluster	secure,	but	it	demands	a	high	tax	for	use.	With	careful

https://oreil.ly/2XLne

planning	and	a	pragmatic	approach,	PodSecurityPolicy	can	be	successfully
implemented	on	any	cluster.	At	the	very	least,	it	will	keep	your	security	team
happy.

Workload	Isolation	and	RuntimeClass
Container	runtimes	are	still	largely	considered	an	insecure	workload	isolation
boundary.	There	is	no	clear	path	to	whether	the	most	common	runtimes	of	today
will	ever	be	recognized	as	secure.	The	momentum	and	interest	among	those	in
the	industry	toward	Kubernetes	has	led	to	the	development	of	different	container
runtimes	that	offer	varying	levels	of	isolation.	Some	are	based	on	familiar	and
trusted	technology	stacks,	whereas	others	are	a	completely	new	attempt	to	tackle
the	problem.	Open	source	projects	like	Kata	containers,	gVisor,	and	Firecracker
tout	the	promise	of	stronger	workload	isolation.	These	specific	projects	are	either
based	on	nested	virtualization	(running	a	super	lightweight	virtual	machine
within	a	virtual	machine)	or	system	call	filtering	and	servicing.

The	introduction	of	these	container	runtimes	that	offer	different	workload
isolation	allows	users	to	choose	many	different	runtimes	based	on	their	isolation
guarantees	in	the	same	cluster.	For	example,	you	could	have	trusted	and
untrusted	workloads	running	in	the	same	cluster	in	different	container	runtimes.

RuntimeClass	was	introduced	into	Kubernetes	as	an	API	to	allow	container
runtime	selection.	It	is	used	to	represent	one	of	the	supported	container	runtimes
on	the	cluster	when	it	has	been	configured	by	the	cluster	administrator.	As	a
Kubernetes	user,	you	can	define	specific	runtime	classes	for	your	workloads	by
using	the	RuntimeClassName	in	the	pod	specification.	How	this	is	implemented
under	the	hood	is	that	the	RuntimeClass	designates	a	RuntimeHandler	which	is
passed	to	the	Container	Runtime	Interface	(CRI)	to	implement.	Node	labeling	or
node	taints	then	can	be	used	in	conjunction	with	nodeSelectors	or	tolerations	to
ensure	that	the	workload	lands	on	a	node	capable	of	supporting	the	desired
RuntimeClass.	Figure	10-1	demonstrates	how	a	kubelet	uses	RuntimeClass	when
launching	pods.

Figure	10-1.	RuntimeClass	flow	diagram

NOTE
The	RuntimeClass	API	is	under	active	development.	For	the	latest	updates	on	the	feature
state,	visit	the	upstream	documentation.

Using	RuntimeClass
If	a	cluster	administrator	has	set	up	different	RuntimeClasses,	you	can	use	them

https://oreil.ly/N3KbO

simply	by	specifying	runtimeClassName	in	the	pod	specification;	for	example:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 runtimeClassName: firecracker

Runtime	Implementations
Following	are	some	open	source	container	runtime	implementations	that	offer
different	levels	of	security	and	isolation	for	your	consideration.	This	list	is
intended	as	a	guide	and	is	by	no	means	exhaustive:

CRI	containerd

An	API	facade	for	container	runtimes	with	an	emphasis	on	simplicity,
robustness,	and	portability.

cri-o

A	purpose-built,	lightweight	Open	Container	Initiative	(OCI)-based
implementation	of	a	container	runtime	for	Kubernetes.

Firecracker

Built	on	top	of	the	Kernel-based	Virtual	Machine	(KVM),	this	virtualization
technology	allows	you	to	launch	microVMs	in	nonvirtualized	environments
very	quickly	using	the	security	and	isolation	of	traditional	VMs.

gVisor

An	OCI-compatible	sandbox	runtime	that	runs	containers	with	a	new	user-
space	kernel,	which	provides	a	low	overhead,	secure,	isolated	container
runtime.

Kata	Containers

A	community	that’s	building	a	secure	container	runtime	that	provides	VM-
like	security	and	isolation	by	running	lightweight	VMs	that	feel	and	operate
like	containers.

https://oreil.ly/1wxU1
https://cri-o.io/
https://oreil.ly/on3Ge
https://gvisor.dev/
https://katacontainers.io/

Workload	Isolation	and	RuntimeClass	Best	Practices
The	following	best	practices	will	help	you	to	avoid	common	workload	isolation
and	RuntimeClass	pitfalls:

Implementing	different	workload	isolation	environments	via
RuntimeClass	will	complicate	your	operational	environment.	This
means	that	workloads	might	not	be	portable	across	different	container
runtimes	given	the	nature	of	the	isolation	they	provide.	Understanding
the	matrix	of	supported	features	across	different	runtimes	can	be
complicated	to	understand	and	will	lead	to	poor	user	experience.	We
recommend	having	separate	clusters,	each	with	a	single	runtime	to
avoid	confusion,	if	possible.

Workload	isolation	doesn’t	mean	secure	multitenancy.	Even	though	you
might	have	implemented	a	secure	container	runtime,	this	doesn’t	mean
that	the	Kubernetes	cluster	and	APIs	have	been	secured	in	the	same
fashion.	You	must	consider	the	total	surface	area	of	Kubernetes	end	to
end.	Just	because	you	have	an	isolated	workload	doesn’t	mean	that	it
cannot	be	modified	by	a	bad	actor	via	the	Kubernetes	API.

Tooling	across	different	runtimes	is	inconsistent.	You	might	have	users
who	rely	on	container	runtime	tooling	for	debugging	and	introspection.
Having	different	runtimes	means	that	you	might	no	longer	be	able	to
run	docker ps	to	list	running	containers.	This	leads	to	confusion	and
complications	when	troubleshooting.

Other	Pod	and	Container	Security
Considerations
In	addition	to	PodSecurityPolicy	and	workload	isolation,	here	are	some	other
tools	you	may	consider	when	determining	how	to	handle	pod	and	container
security.

Admission	Controllers
If	you’re	worried	about	diving	into	the	deep	end	with	PodSecurityPolicy,	here

are	some	options	that	offer	a	fraction	of	the	functionality	but	might	offer	a	viable
alternative.	You	can	use	admission	controllers	such	as	DenyExecOnPrivileged
and	DenyEscalatingExec	in	conjunction	with	an	admission	webhook	to	add
SecurityContext	workload	settings	to	achieve	a	similar	outcome.	For	more
information	on	admission	control,	refer	to	Chapter	17.

Intrusion	and	Anomaly	Detection	Tooling
We’ve	covered	security	policies	and	container	runtimes,	but	what	happens	when
you	want	to	introspect	and	enforce	policy	within	the	container	runtime?	There
are	open	source	tools	that	can	do	this	and	more.	They	operate	by	either	listening
and	filtering	Linux	system	calls	or	by	utilizing	a	Berkeley	Packet	Filter	(BPF).
One	such	tool	is	Falco.	Falco	is	a	Cloud	Native	Computing	Foundation	(CNCF)
project	that	simply	installs	as	a	Demonset	and	allows	you	to	configure	and
enforce	policy	during	execution.	Falco	is	just	one	approach.	We	encourage	you
to	take	a	look	at	the	tooling	in	this	space	to	see	what	works	for	you.

Summary
In	this	chapter,	we	covered	in	depth	both	the	PodSecurityPolicy	and	the
RuntimeClass	APIs	with	which	you	can	configure	a	granular	level	of	security	for
your	workloads.	We	have	also	taken	a	look	at	some	open	source	ecosystem
tooling	that	you	can	use	to	monitor	and	enforce	policy	within	the	container
runtime.	We	have	provided	a	thorough	overview	for	you	to	make	an	informed
decision	about	providing	the	level	of	security	that	is	best	suited	for	your
workload	needs.

https://falco.org/

Chapter	11.	Policy	and
Governance	for	Your	Cluster

Have	you	ever	wondered	how	you	can	ensure	that	all	containers	running	on	a
cluster	come	only	from	an	approved	container	registry?	Or	maybe	you’ve	been
asked	to	ensure	that	services	are	never	exposed	to	the	internet.	These	are
precisely	the	problems	that	policy	and	governance	for	your	cluster	set	out	to
answer.	As	Kubernetes	matures	and	becomes	adopted	by	more	and	more
enterprises,	the	question	of	policy	and	governance	is	becoming	increasingly
frequent.	Although	this	area	is	still	relatively	new	and	upcoming,	in	this	chapter
we	share	what	you	can	do	to	make	sure	that	your	cluster	is	in	compliance	with
the	defined	policies	of	your	enterprise.

Why	Policy	and	Governance	Are	Important
Whether	you	operate	in	a	highly	regulated	environment—for	example,	health
care	or	financial	services—or	you	simply	want	to	make	sure	that	you	maintain	a
level	of	control	over	what’s	running	on	your	clusters,	you’re	going	to	need	a	way
to	implement	the	stated	policies	of	the	enterprise.	After	these	policies	are
defined,	you	will	need	to	determine	how	to	implement	policy	and	maintain
clusters	that	are	compliant	to	these	policies.	These	policies	might	be	in	place	to
meet	regulatory	compliance	or	simply	to	enforce	best	practices.	Whatever	the
reason,	you	must	be	sure	that	you	do	not	sacrifice	developer	agility	and	self-
service	when	implementing	these	policies.

How	Is	This	Policy	Different?
In	Kubernetes,	policy	is	everywhere.	Whether	it	be	network	policy	or	pod
security	policy,	we’ve	all	come	to	understand	what	policy	is	and	when	to	use	it.
We	trust	that	whatever	is	declared	in	Kubernetes	resource	specifications	is
implemented	as	per	the	policy	definition.	Both	network	policy	and	pod	security
policy	are	implemented	at	runtime.	However,	who	manages	the	content	that	is

actually	defined	in	these	Kubernetes	resource	specifications?	That’s	the	job	for
policy	and	governance.	Rather	than	implementing	policy	at	runtime,	when	we
talk	about	policy	in	the	context	of	governance,	what	we	mean	is	defining	policy
that	controls	the	fields	and	values	in	the	Kubernetes	resource	specifications
themselves.	Only	Kubernetes	resource	specifications	that	are	compliant	against
these	policies	are	allowed	and	committed	to	the	cluster	state.

Cloud-Native	Policy	Engine
To	be	able	to	make	decisions	about	what	resources	are	compliant,	we	need	a
policy	engine	that	is	flexible	enough	to	meet	a	variety	of	needs.	The	Open	Policy
Agent	(OPA)	is	an	open	source,	flexible,	lightweight	policy	engine	that	has
become	increasingly	popular	in	the	cloud-native	ecosystem.	Having	OPA	in	the
ecosystem	has	allowed	many	implementations	of	different	Kubernetes
governance	tools	to	appear.	One	such	Kubernetes	policy	and	governance	project
the	community	is	rallying	around	is	called	Gatekeeper.	For	the	rest	of	this
chapter,	we	use	Gatekeeper	as	the	canonical	example	to	illustrate	how	you	might
achieve	policy	and	governance	for	your	cluster.	Although	there	are	other
implementations	of	policy	and	governance	tools	in	the	ecosystem,	they	all	seek
to	provide	the	same	user	experience	(UX)	by	allowing	only	compliant
Kubernetes	resource	specifications	to	be	committed	to	the	cluster.

Introducing	Gatekeeper
Gatekeeper	is	an	open	source	customizable	Kubernetes	admission	webhook	for
cluster	policy	and	governance.	Gatekeeper	takes	advantage	of	the	OPA	constraint
framework	to	enforce	custom	resource	definition	(CRD)-based	policies.	Using
CRDs	allows	for	an	integrated	Kubernetes	experience	that	decouples	policy
authoring	from	implementation.	Policy	templates	are	referred	to	as	constraint
templates,	which	can	be	shared	and	reused	across	clusters.	Gatekeeper	enables
resource	validation	and	audit	functionality.	One	of	the	great	things	about
Gatekeeper	is	that	it’s	portable,	which	means	that	you	can	implement	it	on	any
Kubernetes	clusters,	and	if	you	are	already	using	OPA,	you	might	be	able	to	port
that	policy	over	to	Gatekeeper.

https://www.openpolicyagent.org
https://oreil.ly/RvKUw

NOTE
Gatekeeper	is	still	under	active	development	and	is	subject	to	change.	For	the	most	recent
updates	on	the	project,	visit	the	official	upstream	repository.

Example	Policies
It’s	important	not	to	become	too	stuck	in	the	weeds	and	actually	consider	the
problem	that	we	are	trying	to	solve.	Let’s	take	a	look	at	some	policies	that	solve
some	of	the	most	common	compliance	issues	for	context:

Services	must	not	be	exposed	publicly	on	the	internet.

Allow	containers	only	from	trusted	container	registries.

All	containers	must	have	resource	limits.

Ingress	hostnames	must	not	overlap.

Ingresses	must	use	only	HTTPS.

Gatekeeper	Terminology
Gatekeeper	has	adopted	much	of	the	same	terminology	as	OPA.	It’s	important
that	we	cover	what	that	terminology	is	so	that	you	can	understand	how
Gatekeeper	operates.	Gatekeeper	uses	the	OPA	constraint	framework.	Here,	we
introduce	three	new	terms:

Constraint

Rego

Constraint	template

Constraint
The	best	way	to	think	about	constraints	is	as	restrictions	that	you	apply	to
specific	fields	and	values	of	Kubernetes	resource	specifications.	This	is	really
just	a	long	way	of	saying	policy.	This	means	that	when	constraints	are	defined,
you	are	effectively	stating	that	you	DO	NOT	want	to	allow	this.	The	implications
of	this	approach	mean	that	resources	are	implicitly	allowed	without	a	constraint

https://oreil.ly/Rk8dc

that	issues	a	deny.	This	is	important	because	instead	of	allowing	the	Kubernetes
resources	specification	fields	and	values	you	want,	you	are	denying	only	the
ones	you	do	not	want.	This	architectural	decision	suits	Kubernetes	resource
specifications	nicely	because	they	are	ever	changing.

Rego
Rego	is	an	OPA-native	query	language.	Rego	queries	are	assertions	on	the	data
stored	in	OPA.	Gatekeeper	stores	rego	in	the	constraint	template.

Constraint	template
You	can	think	of	this	as	a	policy	template.	It’s	portable	and	reusable.	Constraint
templates	consist	of	typed	parameters	and	the	target	rego	that	is	parameterized
for	reuse.

Defining	Constraint	Templates
Constraint	templates	are	a	Custom	Resource	Definition	(CRD)	that	provide	a
means	of	templating	policy	so	that	it	can	be	shared	or	reused.	In	addition,
parameters	for	the	policy	can	be	validated.	Let’s	take	a	look	at	a	constraint
template	in	the	context	of	the	earlier	examples.	In	the	following	example,	we
share	a	constraint	template	that	provides	the	policy	“Only	allow	containers	from
trusted	container	registries”:

apiVersion: templates.gatekeeper.sh/v1alpha1
kind: ConstraintTemplate
metadata:
 name: k8sallowedrepos
spec:
 crd:
 spec:
 names:
 kind: K8sAllowedRepos
 listKind: K8sAllowedReposList
 plural: k8sallowedrepos
 singular: k8sallowedrepos
 validation:
 # Schema for the `parameters` field
 openAPIV3Schema:
 properties:
 repos:
 type: array

https://oreil.ly/LQSAH

 items:
 type: string
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8sallowedrepos

 deny[{"msg": msg}] {
 container := input.review.object.spec.containers[_]
 satisfied := [good | repo = input.constraint.spec.parameters.repos[_] ;
good = startswith(container.image, repo)]
 not any(satisfied)
 msg := sprintf("container <%v> has an invalid image repo <%v>, allowed
repos are %v", [container.name, container.image,
input.constraint.spec.parameters.repos])
 }

The	constraint	template	consists	of	three	main	components:

Kubernetes-required	CRD	metadata

The	name	is	the	most	important	part.	We	reference	this	later.

Schema	for	input	parameters

Indicated	by	the	validation	field,	this	section	defines	the	input	parameters
and	their	associated	types.	In	this	example,	we	have	a	single	parameter	called
repo	that	is	an	array	of	strings.

Policy	definition

Indicated	by	the	target	field,	this	section	contains	templated	rego	(the
language	to	define	policy	in	OPA).	Using	a	constraint	template	allows	the
templated	rego	to	be	reused	and	means	that	generic	policy	can	be	shared.	If
the	rule	matches,	the	constraint	is	violated.

Defining	Constraints
To	use	the	previous	constraint	template,	we	must	create	a	constraint	resource.
The	purpose	of	the	constraint	resource	is	to	provide	the	necessary	parameters	to
the	constraint	template	that	we	created	earlier.	You	can	see	that	the	kind	of	the
resource	defined	in	the	following	example	is	K8sAllowedRepos,	which	maps	to
the	constraint	template	defined	in	the	previous	section:

apiVersion: constraints.gatekeeper.sh/v1alpha1
kind: K8sAllowedRepos
metadata:
 name: prod-repo-is-openpolicyagent
spec:
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]
 namespaces:
 - "production"
 parameters:
 repos:
 - "openpolicyagent"

The	constraint	consists	of	two	main	sections:

Kubernetes	metadata

Notice	that	this	constraint	is	of	kind K8sAllowedRepos,	which	matches	the
name	of	the	constraint	template.

The	spec

The	match	field	defines	the	scope	of	intent	for	the	policy.	In	this	example,
we	are	matching	pods	only	in	the	production	namespace.

The	parameters	define	the	intent	for	the	policy.	Notice	that	they	match	the
type	from	the	constraint	template	schema	from	the	previous	section.	In	this
case,	we	allow	only	container	images	that	start	with	openpolicyagent.

Constraints	have	the	following	operational	characteristics:

Logically	AND-ed	together

When	multiple	policies	validate	the	same	field,	if	one	violates
then	the	whole	request	is	rejected

Schema	validation	that	allows	early	error	detection

Selection	criteria

Can	use	label	selectors

Constrain	only	certain	kinds

Constrain	only	in	certain	namespaces

Data	Replication
In	some	cases,	you	might	want	to	compare	the	current	resource	against	other
resources	that	are	in	the	cluster,	for	example,	in	the	case	of	“Ingress	hostnames
must	not	overlap.”	OPA	needs	to	have	all	of	the	other	Ingress	resources	in	its
cache	in	order	to	evaluate	the	rule.	Gatekeeper	uses	a	config	resource	to
manage	which	data	is	cached	in	OPA	in	order	to	perform	evaluations	such	as	the
one	previously	mentioned.	In	addition,	config	resources	are	also	used	in	the
audit	functionality,	which	we	explore	a	bit	later	on.

The	following	example	config	resource	caches	v1	service,	pods,	and
namespaces:

apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata:
name: config
 namespace: gatekeeper-system
spec:
 sync:
 syncOnly:
 - kind: Service
 version: v1
 - kind: Pod
 version: v1
 - kind: Namespace
 version: v1

UX
Gatekeeper	enables	real-time	feedback	to	cluster	users	for	resources	that	violate
defined	policy.	If	we	consider	the	example	from	the	previous	sections,	we	allow
containers	only	from	repositories	that	start	with	openpolicyagent.

Let’s	try	to	create	the	following	resource;	it	is	not	compliant	given	the	current
policy:

apiVersion: v1
kind: Pod
metadata:

 name: opa
 namespace: production
spec:
 containers:
 - name: opa
 image: quay.io/opa:0.9.2

This	gives	you	the	violation	message	that’s	defined	in	the	constraint	template:

$ kubectl create -f bad_resources/opa_wrong_repo.yaml
Error from server (container <opa> has an invalid image repo <quay.io/opa:0.9.2>,
allowed repos are ["openpolicyagent"]): error when creating
"bad_resources/opa_wrong_repo.yaml": admission webhook "validation.gatekeeper.sh"
denied the request: container <opa> has an invalid image repo <quay.io/opa:0.9.2>,
allowed repos are ["openpolicyagent"]

Audit
Thus	far,	we	have	discussed	only	how	to	define	policy	and	have	it	enforced	as
part	of	the	request	admission	process.	How	do	you	handle	a	cluster	that	already
has	resources	deployed	where	you	want	to	know	what	is	in	compliance	with	the
defined	policy?	That	is	exactly	what	audit	sets	out	to	achieve.	When	using	audit,
Gatekeeper	periodically	evaluates	resources	against	the	defined	constraints.	This
helps	with	the	detection	of	misconfigured	resources	according	to	policy	and
allows	for	remediation.	The	audit	results	are	stored	in	the	status	field	of	the
constraint,	making	them	easy	to	find	by	simply	using	kubectl.	To	use	audit,	the
resources	to	be	audited	must	be	replicated.	For	more	details,	refer	to	“Data
Replication”.

Let’s	take	a	look	at	the	constraint	called	prod-repo-is-openpolicyagent	that
you	defined	in	the	previous	section:

$ kubectl get k8sallowedrepos prod-repo-is-openpolicyagent -o yaml
apiVersion: constraints.gatekeeper.sh/v1alpha1
kind: K8sAllowedRepos
metadata:
 creationTimestamp: "2019-06-04T06:05:05Z"
 finalizers:
 - finalizers.gatekeeper.sh/constraint
 generation: 2820
 name: prod-repo-is-openpolicyagent
 resourceVersion: "4075433"

 selfLink: /apis/constraints.gatekeeper.sh/v1alpha1/k8sallowedrepos/prod-repo-is-
openpolicyagent
 uid: b291e054-868e-11e9-868d-000d3afdb27e
spec:
 match:
 kinds:
 - apiGroups:
 - ""
 kinds:
 - Pod
 namespaces:
 - production
 parameters:
 repos:
 - openpolicyagent
status:
 auditTimestamp: "2019-06-05T05:51:16Z"
 enforced: true
 violations:
 - kind: Pod
 message: container <nginx> has an invalid image repo <nginx>, allowed repos are
 ["openpolicyagent"]
 name: nginx
 namespace: production

Upon	inspection,	you	can	see	the	last	time	the	audit	ran	in	the	auditTimestamp
field.	We	also	see	all	of	the	resources	that	violate	this	constraint	under	the
violations	field.

Becoming	Familiar	with	Gatekeeper
The	Gatekeeper	repository	ships	with	fantastic	demonstration	content	that	walks
you	through	a	detailed	example	of	building	policies	to	meet	compliance	for	a
bank.	We	would	strongly	recommend	walking	through	the	demonstration	for	a
hands-on	approach	to	how	Gatekeeper	operates.	You	can	find	the	demonstration
in	this	Git	repository.

Gatekeeper	Next	Steps
The	Gatekeeper	project	is	continuing	to	grow	and	is	looking	to	solve	other
problems	in	the	areas	of	policy	and	governance,	which	includes	features	like
these:

https://oreil.ly/GcR3i

Mutation	(modifying	resources	based	on	policy;	for	example,	add	these
labels)

External	data	sources	(integration	with	Lightweight	Directory	Access
Protocol	[LDAP]	or	Active	Directory	for	policy	lookup)

Authorization	(using	Gatekeeper	as	a	Kubernetes	authorization	module)

Dry	run	(allow	users	to	test	policy	before	making	it	active	in	a	cluster)

If	these	sound	like	interesting	problems	that	you	might	be	willing	to	help	solve,
the	Gatekeeper	community	is	always	looking	for	new	users	and	contributors	to
help	shape	the	future	of	the	project.	If	you	would	like	to	learn	more,	head	over	to
the	upstream	repository	on	GitHub.

Policy	and	Governance	Best	Practices
You	should	consider	the	following	best	practices	when	implementing	policy	and
governance	on	your	clusters:

If	you	want	to	enforce	a	specific	field	in	a	pod,	you	need	to	make	a
determination	of	which	Kubernetes	resource	specification	you	want	to
inspect	and	enforce.	Let’s	consider	the	case	of	Deployments,	for
example.	Deployments	manage	ReplicaSets,	which	manage	pods.	We
could	enforce	at	all	three	levels,	but	the	best	choice	is	the	one	that	is	the
lowest	handoff	point	before	the	runtime,	which	in	this	case	is	the	pod.
This	decision,	however,	has	implications.	The	user-friendly	error
message	when	we	try	to	deploy	a	noncompliant	pod,	as	seen	in	“UX”,	is
not	going	to	be	displayed.	This	is	because	the	user	is	not	creating	the
noncompliant	resource,	the	ReplicaSet	is.	This	experience	means	that
the	user	would	need	to	determine	that	the	resource	is	not	compliant	by
running	a	kubectl describe	on	the	current	ReplicaSet	associated	with
the	Deployment.	Although	this	might	seem	cumbersome,	this	is
consistent	behavior	with	other	Kubernetes	features,	such	as	pod	security
policy.

Constraints	can	be	applied	to	Kubernetes	resources	on	the	following
criteria:	kinds,	namespaces,	and	label	selectors.	We	would	strongly

https://oreil.ly/Rk8dc

recommend	scoping	the	constraint	to	the	resources	to	which	you	want	it
to	be	applied	as	tightly	as	possible.	This	ensures	consistent	policy
behavior	as	the	resources	on	the	cluster	grow,	and	means	that	resources
that	don’t	need	to	be	evaluated	aren’t	being	passed	to	OPA,	which	can
result	in	other	inefficiencies.

Synchronizing	and	enforcing	on	potentially	sensitive	data	such	as
Kubernetes	secrets	is	not	recommended.	Given	that	OPA	will	hold	this
in	its	cache	(if	it	is	configured	to	replicate	that	data)	and	resources	will
be	passed	to	Gatekeeper,	it	leaves	surface	area	for	a	potential	attack
vector.

If	you	have	many	constraints	defined,	a	deny	of	constraint	means	that
the	entire	request	is	denied.	There	is	no	way	to	make	this	function	as	a
logical	OR.

Summary
In	this	chapter,	we	covered	why	policy	and	governance	are	important	and	walked
through	a	project	that’s	built	upon	OPA,	a	cloud-native	ecosystem	policy	engine,
to	provide	a	Kubernetes-native	approach	to	policy	and	governance.	You	should
now	be	prepared	and	confident	the	next	time	the	security	teams	asks,	“Are	our
clusters	in	compliance	with	our	defined	policy?”

Chapter	12.	Managing	Multiple
Clusters

In	this	chapter,	we	discuss	best	practices	for	managing	multiple	Kubernetes
clusters.	We	dive	into	the	details	of	the	differences	between	multicluster
management	and	federation,	tools	to	manage	multiple	clusters,	and	operational
patterns	for	managing	multiple	clusters.

You	might	wonder	why	you	would	need	multiple	Kubernetes	clusters;
Kubernetes	was	built	to	consolidate	many	workloads	to	a	single	cluster,	correct?
This	is	true,	but	there	are	scenarios	such	as	workloads	across	regions,	concerns
of	blast	radius,	regulatory	compliance,	and	specialized	workloads.

We	discuss	these	scenarios	and	explore	the	tools	and	techniques	for	managing
multiple	clusters	in	Kubernetes.

Why	Multiple	Clusters?
When	adopting	Kubernetes,	you	will	likely	have	more	than	one	cluster,	and	you
might	even	start	with	more	than	one	cluster	to	break	out	production	from
staging,	user	acceptance	testing	(UAT),	or	development.	Kubernetes	provides
some	multitenancy	features	with	namespaces,	which	are	a	logical	way	to	break
up	a	cluster	into	smaller	logical	constructs.	Namespaces	allow	you	to	define
Role-Based	Access	Control	(RBAC),	quotas,	pod	security	policies,	and	network
policies	to	allow	separation	of	workloads.	This	is	a	great	way	to	separate	out
multiple	teams	and	projects,	but	there	are	other	concerns	that	might	require	you
to	build	a	multicluster	architecture.	Following	are	concerns	to	think	about	when
deciding	to	use	multicluster	versus	a	single-cluster	architecture:

Blast	radius

Compliance

Security

Hard	multitenancy

Regional-based	workloads

Specialized	workloads

When	thinking	through	your	architecture,	blast	radius	should	come	front	and
center.	This	is	one	of	the	main	concerns	that	we	see	with	users	designing	for
multicluster	architectures.	With	microservice	architectures	we	employ	circuit
breakers,	retries,	bulkheads,	and	rate	limiting	to	constrain	the	extent	of	damage
to	our	systems.	You	should	design	the	same	into	your	infrastructure	layer,	and
multiple	clusters	can	help	with	preventing	the	impact	of	cascading	failures	due	to
software	issues.	For	example,	if	you	have	one	cluster	that	serves	500
applications	and	you	have	a	platform	issue,	it	takes	out	100%	of	the	500
applications.	If	you	had	a	platform	layer	issue	with	5	clusters	serving	those	500
applications,	you	affect	only	20%	of	the	applications.	The	downside	to	this	is
that	now	you	need	to	manage	five	clusters,	and	your	consolidation	ratios	will	not
be	as	good	with	a	single	cluster.	Dan	Woods	wrote	a	great	article	about	an	actual
cascading	failure	in	a	production	Kubernetes	environment.	It	is	a	great	example
of	why	you	will	want	to	consider	multicluster	architectures	for	larger
environments.

Compliance	is	another	area	of	concern	for	multicluster	design	because	there	are
special	considerations	for	Payment	Card	Industry	(PCI),	Health	Insurance
Portability	and	Accountability	(HIPAA),	and	other	workloads.	It’s	not	that
Kubernetes	doesn’t	provide	some	multitenant	features,	but	these	workloads
might	be	easier	to	manage	if	they	are	segregated	out	from	general	purpose
workloads.	These	compliant	workloads	might	have	specific	requirements	with
respect	to	security	hardening,	nonshared	components,	or	dedicated	workload
requirements.	It’s	just	much	easier	to	separate	these	workloads	than	have	to	treat
the	cluster	in	such	a	specialized	fashion.

Security	in	large	Kubernetes	clusters	can	become	difficult	to	manage.	As	you
start	onboarding	more	and	more	teams	to	a	Kubernetes	cluster	each	team	may
have	different	security	requirements	and	it	can	become	very	difficult	to	meet
those	needs	in	a	large	multi-tenant	cluster.	Even	just	managing	RBAC,	network
policies,	and	pod	security	policies	can	become	difficult	at	scale	in	a	single
cluster.	A	small	change	to	a	network	policy	can	inadvertently	open	up	security

https://oreil.ly/YnGUD

risk	to	other	users	of	the	cluster.	With	multiple	clusters	you	can	limit	the	security
impact	with	a	misconfiguration.	If	you	decide	that	a	larger	Kubernetes	cluster
fits	your	requirements,	then	ensure	that	you	have	a	very	good	operational
process	for	making	security	changes	and	understand	the	blast	radius	of	making	a
change	to	RBAC,	network	policy,	and	pod	security	policies.

Kubernetes	doesn’t	provide	hard	multitenancy	because	it	shares	the	same	API
boundary	with	all	workloads	running	within	the	cluster.	With	namespacing	this
gives	us	good	soft	multitenancy,	but	not	enough	to	protect	against	hostile
workloads	within	the	cluster.	Hard	multitenancy	is	not	a	requirement	for	a	lot	of
users;	they	trust	the	workloads	that	will	be	running	within	the	cluster.	Hard
multitenancy	is	typically	a	requirement	if	you	are	a	cloud	provider,	hosting
Software	as	a	Service	(SaaS)-based	software	or	untrusted	workloads	with
untrusted	user	control.

When	running	workloads	that	need	to	serve	traffic	from	in-region	endpoints,
your	design	will	include	multiple	clusters	that	are	based	per	region.	When	you
have	a	globally	distributed	application,	it	becomes	a	requirement	at	that	point	to
run	multiple	clusters.	When	you	have	workloads	that	need	to	be	regionally
distributed,	it’s	a	great	use	case	for	cluster	federation	of	multiple	clusters,	which
we	dig	into	further	later	in	this	chapter.

Specialized	workloads,	such	as	high-performance	computing	(HPC),	machine
learning	(ML),	and	grid	computing,	also	need	to	be	addressed	in	the	multicluster
architecture.	These	types	of	specialized	workloads	might	require	specific	types
of	hardware,	have	unique	performance	profiles,	and	have	specialized	users	of	the
clusters.	We’ve	seen	this	use	case	to	be	less	prevalent	in	the	design	decision
because	having	multiple	Kubernetes	node	pools	can	help	address	specialized
hardware	and	performance	profiles.	When	you	have	the	need	for	a	very	large
cluster	for	an	HPC	or	machine	learning	workload,	you	should	take	into
consideration	just	dedicating	clusters	for	these	workloads.

With	multicluster,	you	get	isolation	for	“free,”	but	it	also	has	design	concerns
that	you	need	to	address	at	the	outset.

Multicluster	Design	Concerns
When	choosing	a	multicluster	design	there	are	some	challenges	that	you’ll	run

into.	Some	of	these	challenges	might	deter	you	from	attempting	a	multicluster
design	given	that	the	design	might	overcomplicate	your	architecture.	Some	of
the	common	challenges	we	find	users	running	into	are:

Data	replication

Service	discovery

Network	routing

Operational	management

Continuous	deployment

Data	replication	and	consistency	has	always	been	the	crux	of	deploying
workloads	across	geographical	regions	and	multiple	clusters.	When	running
these	services,	you	need	to	decide	what	runs	where	and	develop	a	replication
strategy.	Most	databases	have	built-in	tools	to	perform	the	replication,	but	you
need	to	design	the	application	to	be	able	to	handle	the	replication	strategy.	For
NoSQL-type	database	services	this	can	be	easier	because	they	can	can	handle
scaling	across	multiple	instances,	but	you	still	need	to	ensure	that	your
application	can	handle	eventual	consistency	across	geographic	regions	or	at	least
the	latency	across	regions.	Some	cloud	services,	such	as	Google	Cloud	Spanner
and	Microsoft	Azure	CosmosDB,	have	built	database	services	to	help	with	the
complications	of	handling	data	across	multiple	geographic	regions.

Each	Kubernetes	cluster	deploys	its	own	service	discovery	registry,	and	registries
are	not	synchronized	across	multiple	clusters.	This	complicates	applications
being	able	to	easily	identify	and	discover	one	another.	Tools	such	as	HashiCorp’s
Consul	can	transparently	synchronize	services	from	multiple	clusters	and	even
services	that	reside	outside	of	Kubernetes.	There	are	other	tools	like	Istio,
Linkerd,	and	Cillium	that	are	building	on	multiple	cluster	architectures	to	extend
service	discovery	between	clusters.

Kubernetes	makes	networking	from	within	the	cluster	very	easy,	as	it’s	a	flat
network	and	avoids	using	network	address	translation	(NAT).	If	you	need	to
route	traffic	in	and	out	of	the	cluster,	this	becomes	more	complicated.	Ingress
into	the	cluster	is	implemented	as	a	1:1	mapping	of	ingress	to	the	cluster	because
it	doesn’t	support	multicluster	topologies	with	the	Ingress	resource.	You’ll	also

need	to	consider	the	egress	traffic	between	clusters	and	how	to	route	that	traffic.
When	your	applications	reside	within	a	single	cluster	this	is	easy,	but	when
introducing	multicluster,	you	need	to	think	about	the	latency	of	extra	hops	for
services	that	have	application	dependencies	in	another	cluster.	For	applications
that	have	tightly	coupled	dependencies,	you	should	consider	running	these
services	within	the	same	cluster	to	remove	latency	and	extra	complexity.

One	of	the	biggest	overheads	to	managing	multiclusters	is	the	operational
management.	Instead	of	one	or	a	couple	of	clusters	to	manage	and	keep
consistent,	you	might	now	have	many	clusters	to	manage	in	your	environment.
One	of	the	most	important	aspects	to	managing	multiclusters	is	ensuring	that	you
have	good	automation	practices	in	place	because	this	will	help	to	reduce	the
operational	burden.	When	automating	your	clusters,	you	need	to	take	into
account	the	infrastructure	deployment	and	managing	add-on	features	to	your
clusters.	For	managing	the	infrastructure,	using	a	tool	like	HashioCrp’s
Terraform	can	help	with	deploying	and	managing	a	consistent	state	across	your
fleet	of	clusters.

Using	an	Infrastructure	as	Code	(IaC)	tool	like	Terraform	will	give	you	the
benefit	of	providing	a	reproducible	way	to	deploy	your	clusters.	On	the	other
hand,	you	also	need	to	be	able	to	consistently	manage	add-ons	to	the	cluster,
such	as	monitoring,	logging,	ingress,	security,	and	other	tools.	Security	is	also	an
important	aspect	of	operational	management,	and	you	must	be	able	to	maintain
security	policies,	RBAC,	and	network	policies	across	clusters.	Later	in	this
chapter,	we	dive	deeper	into	the	topic	of	maintaining	consistent	clusters	with
automation.

With	multiple	clusters	and	Continuous	Delivery	(CD),	you	now	need	to	deal	with
multiple	Kubernetes	API	endpoints	versus	a	single	API	endpoint.	This	can	cause
challenges	in	the	distribution	of	applications.	You	can	easily	manage	multiple
pipelines,	but	suppose	that	you	have	a	hundred	different	pipelines	to	manage,
which	can	make	application	distribution	very	difficult.	With	this	in	mind,	you
need	to	look	at	different	approaches	to	managing	this	situation.	We	take	a	look	at
solutions	to	help	manage	this	later	in	the	chapter.

Managing	Multiple	Cluster	Deployments

One	of	the	first	steps	that	you	want	to	take	when	managing	multicluster
deployments	is	to	use	an	IoC	tool	like	Terraform	to	set	up	deployments.	Other
deployment	tools,	such	as	kubespray,	kops,	or	other	cloud	provider–specific
tools,	are	all	valid	choices	but,	most	importantly,	use	a	tool	that	allows	you	to
source	control	your	cluster	deployment	for	repeatability.

Automation	is	key	to	successfully	managing	multiple	clusters	in	your
environment.	You	might	not	have	everything	automated	on	day	one,	but	you
should	make	it	a	priority	to	automate	all	aspects	of	your	cluster	deployments	and
operations.

An	interesting	project	in	development	is	the	Kubernetes	Cluster	API.	The
Cluster	API	is	a	Kubernetes	project	to	bring	declarative,	Kubernetes-style	APIs
to	cluster	creation,	configuration,	and	management.	It	provides	optional,	additive
functionality	on	top	of	core	Kubernetes.	The	Cluster	API	provides	a	cluster-level
configuration	declared	through	a	common	API,	which	will	give	you	the	ability	to
easily	automate	and	build	tooling	around	cluster	automation.	As	of	this	writing,
the	project	is	still	in	development,	so	make	sure	to	keep	an	eye	out	for	it	as	it
matures.

Deployment	and	Management	Patterns
Kubernetes	operators	were	introduced	as	an	implementation	of	the	Infrastructure
as	Software	concept.	Using	them	allows	you	to	abstract	the	deployment	of
applications	and	services	in	a	Kubernetes	cluster.	For	example,	suppose	that	you
want	to	standardize	on	Prometheus	for	monitoring	your	Kubernetes	clusters.	You
would	need	to	create	and	manage	various	objects	(deployment,	service,	ingress,
etc.)	for	each	cluster	and	team.	You	would	also	need	to	maintain	the	fundamental
configurations	of	Prometheus,	such	as	versions,	persistence,	retention	policies,
and	replicas.	As	you	can	imagine,	the	maintenance	of	such	a	solution	could	be
difficult	across	a	large	number	of	clusters	and	teams.

Instead	of	dealing	with	so	many	objects	and	configurations,	you	could	install	the
prometheus-operator.	This	extends	the	Kubernetes	API,	exposing	multiple
new	object	kinds	called	Prometheus,	ServiceMonitor,	PrometheusRule,	and
AlertManager,	which	allow	you	to	specify	all	of	the	details	of	a	Prometheus
deployment	using	just	a	few	objects.	You	can	use	the	kubectl	tool	to	manage

https://oreil.ly/edzIa

such	objects,	just	as	it	manages	any	other	Kubernetes	API	object.

Figure	12-1	shows	the	architecture	of	the	prometheus-operator.

Figure	12-1.	prometheus-operator	architecture

Utilizing	the	Operator	pattern	for	automating	key	operational	tasks	can	help
improve	your	overall	cluster	management	capabilities.	The	Operator	pattern	was
introduced	by	the	CoreOS	team	in	2016	with	the	etcd	operator	and	prometheus-
operator.	The	Operator	pattern	builds	on	two	concepts:

Custom	resource	definitions

Custom	controllers

Custom	resource	definitions	(CRDs)	are	objects	that	allow	you	to	extend	the
Kubernetes	API,	based	on	your	own	API	that	you	define.

Custom	controllers	are	built	on	the	core	Kubernetes	concepts	of	resources	and
controllers.	Custom	controllers	allow	you	to	build	your	own	logic	by	watching
events	from	Kubernetes	API	objects	such	as	namespaces,	Deployments,	pods,	or
your	own	CRD.	With	custom	controllers,	you	can	build	your	CRDs	in	a
declarative	way.	If	you	consider	how	the	Kubernetes	Deployment	controller
works	in	a	reconciliation	loop	to	always	maintain	the	state	of	the	deployment

object	to	maintain	its	declarative	state,	this	brings	the	same	advantages	of
controllers	to	your	CRDs.

When	utilizing	the	Operator	pattern,	you	can	build	in	automation	to	operational
tasks	that	need	to	be	performed	on	operational	tooling	in	multiclusters.	Let’s	take
the	following	Elasticsearch	operator	as	an	example.	As	in	Chapter	3,	we	utilized
the	Elasticsearch,	Logstash,	and	Kibana	(ELK)	stack	to	perform	log	aggregation
of	our	cluster.	The	Elasticsearch	operator	can	perform	the	following	operations:

Replicas	for	master,	client,	and	data	nodes

Zones	for	highly	available	deployments

Volume	sizes	for	master	and	data	nodes

Resizing	of	cluster

Snapshot	for	backups	of	the	Elasticsearch	cluster

As	you	can	see,	the	operator	provides	automation	for	many	tasks	that	you	would
need	to	perform	when	managing	Elasticsearch,	such	as	automating	snapshots	for
backup	and	resizing	the	cluster.	The	beauty	of	this	is	that	you	manage	all	of	this
through	familiar	Kubernetes	objects.

Think	about	how	you	can	take	advantage	of	different	operators	like	the
prometheus-operator	in	your	environment	and	also	how	you	can	build	your
own	custom	operator	to	offload	common	operational	tasks.

The	GitOps	Approach	to	Managing	Clusters
GitOps	was	popularized	by	the	folks	at	Weaveworks,	and	the	idea	and
fundamentals	were	based	on	their	experience	of	running	Kubernetes	in
production.	GitOps	takes	the	concepts	of	the	software	development	life	cycle
and	applies	them	to	operations.	With	GitOps,	your	Git	repository	becomes	your
source	of	truth,	and	your	cluster	is	synchronized	to	the	configured	Git	repository.
For	example,	if	you	update	a	Kubernetes	Deployment	manifest,	those
configuration	changes	are	automatically	reflected	in	the	cluster	state.

By	using	this	method,	you	can	make	it	easier	to	maintain	multiclusters	that	are
consistent	and	avoid	configuration	drift	across	the	fleet.	GitOps	allows	you	to

https://oreil.ly/9WvJQ

declaratively	describe	your	clusters	for	multiple	environments	and	drives	to
maintain	that	state	for	the	cluster.	The	practice	of	GitOps	can	apply	to	both
application	delivery	and	operations,	but	in	this	chapter,	we	focus	on	using	it	to
manage	clusters	and	operational	tooling.

Weaveworks	Flux	was	one	of	the	first	tools	to	enable	the	GitOps	approach,	and
it’s	the	tool	we	will	use	throughout	the	rest	of	the	chapter.	There	are	many	new
tools	that	have	been	released	into	the	cloud-native	ecosystem	that	are	worth	a
look,	such	as	Argo	CD,	from	the	folks	at	Intuit,	which	has	also	been	widely
adopted	for	the	GitOps	approach.

Figure	12-2	presents	a	representation	of	a	GitOps	workflow.

Figure	12-2.	GitOps	workflow

So,	let’s	get	Flux	set	up	in	your	cluster	and	get	a	repository	synchronized	to	the
cluster:

git clone https://github.com/weaveworks/flux
cd flux

You	now	need	to	make	a	change	to	the	Deployment	manifest	to	configure	it	with
your	forked	repo	from	Chapter	6.	Modify	the	following	line	in	the	Deployment
file	to	match	your	forked	GitHub	repository:

vim deploy/flux-deployment.yaml

Modify	the	following	line	with	your	Git	repository:

--git-url=git@github.com:weaveworks/flux-get-started (ex. --git-
url=git@github.com:your_repo/kbp)

Now,	go	ahead	and	deploy	Flux	to	your	cluster:

kubectl apply -f deploy

When	Flux	installs,	it	creates	an	SSH	key	so	that	it	can	authenticate	with	the	Git
repository.	Use	the	Flux	command-line	tool	to	retrieve	the	SSH	key	so	that	you
can	configure	access	to	your	forked	repository;	first,	you	need	to	install
fluxctl.

For	MacOS:

brew install fluxctl

For	Linux	Snap	Packages:

snap install fluxctl

For	all	other	packages,	you	can	find	the	latest	binaries	here:

fluxctl identity

Open	GitHub,	navigate	to	your	fork,	go	to	Setting	>	“Deploy	keys,”	click	“Add
deploy	key,”	give	it	a	Title,	select	the	“Allow	write	access”	checkbox,	paste	the
Flux	public	key,	and	then	click	“Add	key.”	See	the	GitHub	documentation	for
more	information	on	how	to	manage	deploy	keys.

Now,	if	you	view	the	Flux	logs,	you	should	see	that	it	is	synchronizing	with	your
GitHub	repository:

kubectl -n default logs deployment/flux -f

After	you	see	that	it’s	synchronizing	with	your	GitHub	repository,	you	should
see	that	the	Elasticsearch,	Prometheus,	Redis,	and	frontend	pods	are	created:

kubectl get pods -w

With	this	example	complete,	you	should	be	able	to	see	how	easy	it	is	for	you	to
synchronize	your	GitHub	repository	state	with	your	Kubernetes	cluster.	This

https://oreil.ly/4TAx5

makes	managing	the	multiple	operational	tools	in	your	cluster	much	easier,
because	multiple	clusters	can	synchronize	with	a	single	repository	and	remove
the	situation	of	having	snowflake	clusters.

Multicluster	Management	Tools
When	working	with	multiple	clusters,	using	Kubectl	can	immediately	become
confusing	because	you	need	to	set	different	contexts	to	manage	the	different
clusters.	Two	tools	that	you	will	want	to	install	right	away	when	dealing	with
multiple	clusters	are	kubectx	and	kubens,	which	allow	you	to	easily	change
between	multiple	contexts	and	namespaces.

When	you	need	a	full-fleged	multicluster	management	tool,	there	are	a	few
within	the	Kubernetes	ecosystem	to	look	at	for	managing	multiple	clusters.
Following	is	a	summary	of	some	of	the	more	popular	tools:

Rancher	centrally	manages	multiple	Kubernetes	clusters	in	a	centrally
managed	user	interface	(UI).	It	monitors,	manages,	backs	up,	and
restores	Kubernetes	clusters	across	on-premises,	cloud,	and	hosted
Kubernetes	setups.	It	also	has	tools	for	controlling	applications
deployed	across	multiple	clusters	and	provides	operational	tooling.

KQueen	provides	a	multitenant	self-service	portal	for	Kubernetes
cluster	provisioning	and	focuses	on	auditing,	visibility,	and	security	of
multiple	Kubernetes	clusters.	KQueen	is	an	open	source	project	that
was	developed	by	the	folks	at	Mirantis.

Gardener	takes	a	different	approach	to	multicluster	management	in	that
it	utilizes	Kubernetes	primitives	to	provide	Kubernetes	as	a	Service	to
your	end	users.	It	provides	support	for	all	major	cloud	vendors	and	was
developed	by	the	folks	at	SAP.	This	solution	is	really	geared	toward
users	who	are	building	a	Kubernetes	as	a	Service	offering.

Kubernetes	Federation
Kubernetes	first	introduced	Federation	v1	in	Kubernetes	1.3,	and	it	has	since
been	deprecated	in	lieu	of	Federation	v2.	Federation	v1	set	out	to	help	with	the

distribution	of	applications	to	multiple	clusters.	Federation	v1	was	built	utilizing
the	Kubernetes	API	and	heavily	relied	on	Kubernetes	annotations,	which
imposed	some	problems	in	its	design.	The	design	was	tightly	coupled	to	the	core
Kubernetes	API,	which	made	Federation	v1	quite	monolithic	in	nature.	At	the
time,	the	design	decisions	were	probably	not	bad	choices,	but	were	built	on	the
primitives	that	were	available.	The	introducton	of	Kubernetes	CRDs	allowed	a
different	way	of	thinking	about	how	Federation	could	be	designed.

Federation	v2	(now	called	KubeFed)	requires	Kubernetes	1.11+	and	is	currently
in	alpha	as	of	this	writing.	Federation	v2	is	built	around	the	concept	of	CRDs
and	custom	controllers,	which	allows	you	to	extend	Kubernetes	with	new	APIs.
Building	around	CRDs	allows	Federation	to	have	new	API	types	and	not	be
restricted	just	to	previous	v1	deployment	objects.

KubeFed	is	not	necessarily	about	multicluster	management,	but	providing	high
availability	(HA)	deployments	across	multiple	clusters.	It	allows	you	to	combine
multiple	clusters	into	a	single	management	endpoint	for	delivering	applications
on	Kubernetes.	For	example,	if	you	have	a	cluster	that	resides	in	multiple	public
cloud	environments,	you	can	combine	these	clusters	into	a	single	control	plane
to	manage	deployments	to	all	clusters	to	increase	the	resiliency	of	your
application.

As	of	this	writing,	the	following	Federated	resources	are	supported:

Namespaces

ConfigMaps

Secrets

Ingress

Services

Deployments

ReplicaSets

Horizontal	Pod	Autoscalers

DaemonSets

Jobs

To	understand	how	this	all	works,	let’s	first	take	a	look	at	the	architecture	in
Figure	12-3.

Figure	12-3.	Kubernetes	Federation	architecture

It’s	important	to	understand	that	with	Federation,	not	everything	is	just	copied
down	to	all	clusters.	For	example,	with	Deployments	and	ReplicaSets,	you
define	the	number	of	replicas,	which	are	then	spread	out	across	the	clusters.	This
is	the	default	for	Deployments,	but	you	can	change	the	configuration.	On	the
other	hand,	if	you	create	a	namespace,	that	namespace	is	cluster	scoped	and
created	in	each	cluster.	Secrets,	ConfigMaps,	and	DaemonSets	work	the	same
way	and	are	copied	down	to	each	cluster.	The	Ingress	resource	is	also	different
from	the	aforementioned	objects	because	it	creates	a	global	multicluster	resource
with	a	single	entry	point	into	a	service.	As	you	can	see	from	how	KubeFed
works,	the	use	cases	Kubefed	supports	are	multiregion,	multicloud,	and	global
application	deployments	to	Kubernetes.

Following	is	an	example	of	a	federated	Deployment:

apiVersion: types.kubefed.io/v1beta1
kind: FederatedDeployment
metadata:
 name: test-deployment
 namespace: test-namespace
spec:
 template:
 metadata:
 labels:
 app: nginx
 spec:
 replicas: 5
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx
 name: nginx
 placement:
 clusters:
 - name: azure
 - name: google

This	example	creates	a	federated	Deployment	of	an	NGINX	pod	with	five
replicas,	which	are	then	spread	across	our	clusters	in	Azure	and	another	cluster
in	Google.

Setting	up	federated	Kubernetes	clusters	is	beyond	the	scope	of	this	book,	but
you	can	learn	more	about	the	subject	by	referring	to	the	KubeFed	User	Guide.

KubeFed	is	still	in	alpha,	so	keep	an	eye	on	it,	but	embrace	the	tools	that	you
already	have	or	can	implement	now	so	that	you	can	be	successful	with
Kubernetes	HA	and	multicluster	deployments.

Managing	Multiple	Clusters	Best	Practices
Consider	the	following	best	practices	when	managing	multiple	Kubernetes
clusters:

https://oreil.ly/tWmrY

Limit	the	blast	radius	of	your	clusters	to	ensure	cascading	failures	don’t
have	a	bigger	impact	on	your	applications.

If	you	have	regulatory	concerns	such	as	PCI,	HIPPA,	or	HiTrust,	think
about	utilizing	multiclusters	to	ease	the	complexity	of	mixing	these
workloads	with	general	workloads.

If	hard	multitenancy	is	a	business	requirement,	workloads	should	be
deployed	to	a	dedicated	cluster.

If	multiple	regions	are	needed	for	your	applications,	utilize	a	Global
Load	Balancer	to	manage	traffic	between	clusters.

You	can	break	out	specialized	workloads	such	as	HPC	into	their	own
individual	clusters	to	ensure	that	the	specialized	needs	for	the	workloads
are	met.

If	you’re	deploying	workloads	that	will	be	spread	across	multiple
regional	datacenters,	first	ensure	that	there	is	a	data	replication	strategy
for	the	workload.	Multiple	clusters	across	regions	can	be	easy,	but
replicating	data	across	regions	can	be	complicated,	so	ensure	that	there
is	a	sound	strategy	to	handle	asynchronous	and	synchronous	workloads.

Utilize	Kubernetes	operators	like	the	prometheus-operator	or
Elasticsearch	operator	to	handle	automated	operational	tasks.

When	designing	your	multicluster	strategy,	also	consider	how	you	will
do	service	discovery	and	networking	between	clusters.	Service	mesh
tools	like	HashiCorp’s	Consul	or	Istio	can	help	with	networking	across
clusters.

Be	sure	that	your	CD	strategy	can	handle	multiple	rollouts	between
regions	or	multiple	clusters.

Investigate	utilizing	a	GitOps	approach	to	managing	multiple	cluster
operational	components	to	ensure	consistency	between	all	clusters	in
your	fleet.	The	GitOps	approach	doesn’t	always	work	for	everyone’s
environment,	but	you	should	at	least	investigate	it	to	ease	the
operational	burden	of	multicluster	environments.

Summary
In	this	chapter,	we	discussed	different	strategies	for	managing	multiple
Kubernetes	clusters.	It’s	important	to	think	about	what	your	needs	are	at	the
outset	and	whether	those	needs	match	a	multicluster	topology.	The	first	scenario
to	think	about	is	whether	you	truly	need	hard	multitenancy	because	this	will
automatically	require	a	multicluster	strategy.	If	you	don’t,	consider	your
compliance	needs	and	whether	you	have	the	operational	capacity	to	consume	the
overhead	of	multicluster	architectures.	Finally,	if	you’re	going	with	more,
smaller	clusters,	ensure	that	you	put	automation	around	the	delivery	and
management	of	them	to	reduce	the	operational	burden.

Chapter	13.	Integrating	External
Services	and	Kubernetes

In	many	of	the	chapters	in	this	book,	we’ve	discussed	how	to	build,	deploy,	and
manage	services	in	Kubernetes.	However,	the	truth	is	that	systems	don’t	exist	in
a	vaccum,	and	most	of	the	services	that	we	build	will	need	to	interact	with
systems	and	services	that	exist	outside	of	the	Kubernetes	cluster	in	which	they’re
running.	This	might	be	because	we	are	building	new	services	that	are	being
accessed	by	legacy	infrastructure	running	in	virtual	or	physical	machines.
Conversely,	it	might	be	because	the	services	that	we	are	building	might	need	to
access	preexisting	databases	or	other	services	that	are	likewise	running	on
physical	infrastructure	in	an	on-premises	datacenter.	Finally,	you	might	have
multiple	different	Kubernetes	clusters	with	services	that	you	need	to
interconnect.	For	all	of	these	reasons,	the	ability	to	expose,	share,	and	build
services	that	span	the	boundary	of	your	Kubernetes	cluster	is	an	important	part
of	building	real-world	applications.

Importing	Services	into	Kubernetes
The	most	common	pattern	for	connecting	Kubernetes	with	external	services
consists	of	a	Kubernetes	service	that	is	consuming	a	service	that	exists	outside	of
the	Kubernetes	cluster.	Often,	this	is	because	Kubernetes	is	being	used	for	some
new	application	development	or	interface	for	a	legacy	resource	like	an	on-
premises	database.	This	pattern	often	makes	the	most	sense	for	incremental
development	of	cloud-native	services.	Because	the	database	layer	contains
significant	mission-critical	data,	it	is	a	heavy	lift	to	move	it	to	the	cloud,	let
alone	containers.	At	the	same	time,	there	is	a	great	deal	of	value	in	providing	a
modern	layer	on	top	of	such	a	database	(e.g.,	supplying	a	GraphQL	interface)	as
the	foundation	for	building	a	new	generation	of	applications.	Likewise,	moving
this	layer	to	Kubernetes	often	makes	a	great	deal	of	sense	because	rapid
development	and	reliable	continuous	deployment	of	this	middleware	enables	a
great	deal	of	agility	with	minimal	risk.	Of	course,	to	achieve	this,	you	need	to

make	the	database	accessible	from	within	Kubernetes.

When	we	consider	the	task	of	making	an	external	service	accessible	from
Kubernetes,	the	first	challenge	is	simply	to	get	the	networking	to	work	correctly.
The	specific	details	of	getting	networking	operational	are	very	specific	to	both
the	location	of	the	database	as	well	as	the	location	of	the	Kubernetes	cluster;
thus,	they	are	beyond	the	scope	of	this	book,	but	generally,	cloud-based
Kubernetes	providers	enable	the	deployment	of	a	cluster	into	a	user-provided
virtual	network	(VNET),	and	those	virtual	networks	can	then	be	peered	up	with
an	on-premises	network	for	connectivity.

After	you’ve	established	network	connectivity	between	pods	in	the	Kubernetes
cluster	and	the	on-premises	resource,	the	next	challenge	is	to	make	the	external
service	look	and	feel	like	a	Kubernetes	service.	In	Kubernetes,	service	discovery
occurs	via	Domain	Name	System	(DNS)	lookups	and,	thus,	to	make	our	external
database	feel	like	it	is	a	native	part	of	Kubernetes,	we	need	to	make	the	database
discoverable	in	the	same	DNS.

Selector-Less	Services	for	Stable	IP	Addresses
The	first	way	to	achieve	this	is	with	a	selector-less	Kubernetes	Service.	When
you	create	a	Kubernetes	Service	without	a	selector,	there	are	no	Pods	that	match
the	service;	thus,	there	is	no	load	balancing	performed.	Instead,	you	can	program
this	selector-less	service	to	have	the	specific	IP	address	of	the	external	resource
that	you	want	to	add	to	the	Kubernetes	cluster.	That	way,	when	a	Kubernetes	pod
performs	a	lookup	for	your-database,	the	built-in	Kubernetes	DNS	server	will
translate	that	to	a	service	IP	address	of	your	external	service.	Here	is	an	example
of	a	selector-less	service	for	an	external	database:

apiVersion: v1
kind: Service
metadata:
 name: my-external-database
spec:
 ports:
 - protocol: TCP
 port: 3306
 targetPort: 3306

When	the	service	exists,	you	need	to	update	its	endpoints	to	contain	the	database
IP	address	serving	at	24.1.2.3:

apiVersion: v1
kind: Endpoints
metadata:
 # Important! This name has to match the Service.
 name: my-external-database
subsets:
 - addresses:
 - ip: 24.1.2.3
 ports:
 - port: 3306

Figure	13-1	depicts	how	this	integrates	together	within	Kubernetes.

Figure	13-1.	Service	integration

CNAME-Based	Services	for	Stable	DNS	Names
The	previous	example	assumed	that	the	external	resource	that	you	were	trying	to
integrate	with	your	Kubernetes	cluster	had	a	stable	IP	address.	Although	this	is
often	true	of	physical	on-premises	resources,	depending	on	the	network	toplogy,
it	might	not	always	be	true,	and	it	is	significantly	less	likely	to	be	true	in	a	cloud
environment	where	virtual	machine	(VM)	IP	addresses	are	more	dynamic.
Alternatively,	the	service	might	have	multiple	replicas	sitting	behind	a	single

DNS-based	load	balancer.	In	these	situations,	the	external	service	that	you	are
trying	to	bridge	into	your	cluster	doesn’t	have	a	stable	IP	address,	but	it	does
have	a	stable	DNS	name.

In	such	a	situation,	you	can	define	a	CNAME-based	Kubernetes	Service.	If
you’re	not	familiar	with	DNS	records,	a	CNAME,	or	Canonical	Name,	record	is
an	indication	that	a	particular	DNS	address	should	be	translated	to	a	different
Canonical	DNS	name.	For	example,	a	CNAME	record	for	foo.com	that	contains
bar.com	indicates	that	anyone	looking	up	foo.com	should	perform	a	recursive
lookup	for	bar.com	to	obtain	the	correct	IP	address.	You	can	use	Kubernetes
Services	to	define	CNAME	records	in	the	Kubernetes	DNS	server.	For	example,
if	you	have	an	external	database	with	a	DNS	name	of	database.myco.com,	you
might	create	a	CNAME	Service	that	is	named	myco-database.	Such	a	Service
looks	like	this:

kind: Service
apiVersion: v1
metadata:
 name: my-external-database
spec:
 type: ExternalName
 externalName: database.myco.com

With	a	Service	defined	in	this	way,	any	pod	that	does	a	lookup	for	myco-
database	will	be	recursively	resolved	to	database.myco.com.	Of	course,	to
make	this	work,	the	DNS	name	of	your	external	resource	also	needs	to	be
resolveable	from	the	Kubernetes	DNS	servers.	If	the	DNS	name	is	globally
accessible	(e.g.,	from	a	well-known	DNS	service	provider),	this	will	simply
automatically	work.	However,	if	the	DNS	of	the	external	service	is	located	in	a
company-local	DNS	server	(e.g.,	a	DNS	server	that	services	only	internal
traffic),	the	Kubernetes	cluster	might	not	know	by	default	how	to	resolve	queries
to	this	corporate	DNS	server.

To	set	up	the	cluster’s	DNS	server	to	communicate	with	an	alternate	DNS
resolver,	you	need	to	adjust	its	configuration.	You	do	this	by	updating	a
Kubernetes	ConfigMap	with	a	configuration	file	for	the	DNS	server.	As	of	this
writing,	most	clusters	have	moved	over	to	the	CoreDNS	server.	This	server	is
configured	by	writing	a	Corefile	configuration	into	a	ConfigMap	named

coredns	in	the	kube-system	namespace.	If	you	are	still	using	the	kube-dns
server,	it	is	configured	in	a	similar	manner	but	with	a	different	ConfigMap.

CNAME	records	are	a	useful	way	to	map	external	services	with	stable	DNS
names	to	names	that	are	discoverable	within	your	cluster.	At	first	it	might	seem
counterintuitive	to	remap	a	well-known	DNS	address	to	a	cluster-local	DNS
address,	but	the	consistency	of	having	all	services	look	and	feel	the	same	is
usually	worth	the	small	amount	of	added	complexity.	Additionally,	because	the
CNAME	service,	like	all	Kubernetes	services,	is	defined	per	namespace,	you	can
use	namespaces	to	map	the	same	service	name	(e.g.,	database)	to	different
external	services	(e.g.,	canary	or	production),	depending	on	the	Kubernetes
namespace.

Active	Controller-Based	Approaches
In	a	limited	set	of	circumstances,	neither	of	the	previous	methods	for	exposing
external	services	within	Kubernetes	is	feasible.	Generally,	this	is	because	there	is
neither	a	stable	DNS	address	nor	a	single	stable	IP	address	for	the	service	that
you	want	to	expose	within	the	Kubernetes	cluster.	In	such	circumstances,
exposing	the	external	service	within	the	Kubernetes	cluster	is	significantly	more
complicated,	but	it	isn’t	impossible.

To	achieve	this,	you	need	to	have	some	understanding	of	how	Kubernetes
Services	work	under	the	hood.	Kubernetes	Services	are	actually	made	up	of	two
different	resources:	the	Service	resource,	with	which	you	are	doubtless	familiar,
and	the	Endpoints	resource	that	represents	the	IP	addresses	that	make	up	the
service.	In	normal	operation,	the	Kubernetes	controller	manager	populates	the
endpoints	of	a	service	based	on	the	selector	in	the	service.	However,	if	you
create	a	selector-less	service,	as	in	the	first	stable-IP	approach,	the	Endpoints
resource	for	the	service	will	not	be	populated,	because	there	are	no	pods	that	are
selected.	In	this	situation,	you	need	to	supply	the	control	loop	to	create	and
populate	the	correct	Endpoints	resource.	You	need	to	dynamically	query	your
infrastructure	to	obtain	the	IP	addresses	for	the	service	external	to	Kubernetes
that	you	want	to	integrate,	and	then	populate	your	service’s	endpoints	with	these
IP	addresses.	After	you	do	this,	the	mechanisms	of	Kubernetes	take	over	and
program	both	the	DNS	server	and	the	kube-proxy	correctly	to	load-balance
traffic	to	your	external	service.	Figure	13-2	presents	a	complete	picture	of	how

this	works	in	practice.

Figure	13-2.	An	external	service

Exporting	Services	from	Kubernetes
In	the	previous	section,	we	explored	how	to	import	preexisting	services	to
Kubernetes,	but	you	might	also	need	to	export	services	from	Kubernetes	to	the
preexisting	environments.	This	might	occur	because	you	have	a	legacy	internal
application	for	customer	management	that	needs	access	to	some	new	API	that
you	are	developing	in	a	cloud-native	infrastructure.	Alternately,	you	might	be
building	new	microservice-based	APIs	but	you	need	to	interface	with	a
preexisting	traditional	web	application	firewall	(WAF)	because	of	internal	policy
or	regulatory	requirements.	Regardless	of	the	reason,	being	able	to	expose
services	from	a	Kubernetes	cluster	out	to	other	internal	applications	is	a	critical
design	requirement	for	many	applications.

The	core	reason	that	this	can	be	challenging	is	because	in	many	Kubernetes
installations,	the	pod	IP	addresses	are	not	routeable	addresses	from	outside	of	the
cluster.	Via	tools	like	flannel,	or	other	networking	providers,	routing	is
established	within	a	Kubernetes	cluster	to	facilitate	communication	between
pods	and	also	between	nodes	and	pods,	but	the	same	routing	is	not	generally
extended	out	to	arbitrary	machines	in	the	same	network.	Furthermore,	in	the	case
of	cloud	to	on-premises	connectivity,	the	IP	addresses	of	the	pods	are	not	always
advertised	back	across	a	VPN	or	network	peering	relationship	into	the	on-
premises	network.	Consequently,	setting	up	routing	between	a	traditional
application	and	Kubernetes	pods	is	the	key	task	to	enable	the	export	of
Kubernetes-based	services.

Exporting	Services	by	Using	Internal	Load	Balancers
The	easiest	way	to	export	from	Kubernetes	is	by	using	the	built-in	Service
object.	If	you	have	had	any	previous	experience	with	Kubernetes,	you	have	no
doubt	seen	how	you	can	connect	a	cloud-based	load	balancer	to	bring	external
traffic	to	a	collection	of	pods	in	the	cluster.	However,	you	might	not	have
realized	that	most	clouds	also	offer	an	internal	load	balancer.	The	internal	load
balancer	provides	the	same	capabilities	to	map	a	virtual	IP	address	to	a	collection
of	pods,	but	that	virtual	IP	address	is	drawn	from	an	internal	IP	address	space
(e.g.,	10.0.0.0/24)	and	thus	is	only	routeable	from	within	that	virtual	network.
You	activate	an	internal	load	balancer	by	adding	a	cloud-specific	annotation	to
your	Service	load	balancer.	For	example,	in	Microsoft	Azure,	you	add	the
service.beta.kubernetes.io/azure-load-balancer-internal: "true"
annotation.	On	Amazon	Web	Services	(AWS),	the	annotation	is
service.beta.kubernetes.io/aws-load-balancer-internal: 0.0.0.0/0.
You	place	annotations	in	the	metadata	field	in	the	Service	resource	as	follows:

apiVersion: v1
kind: Service
metadata:
 name: my-service
 annotations:
 # Replace this as needed in other environments
 service.beta.kubernetes.io/azure-load-balancer-internal: "true"
...

When	you	export	a	Service	via	an	internal	load	balancer,	you	receive	a	stable,
routeable	IP	address	that	is	visible	on	the	virtual	network	outside	of	the	cluster.
You	then	can	either	use	that	IP	address	directly	or	set	up	internal	DNS	resolution
to	provide	discovery	for	your	exported	service.

Exporting	Services	on	NodePorts
Unfortunately,	in	on-premises	installations,	cloud-based	internal	load	balancers
are	unavailable.	In	this	context	using	a	NodePort-based	service	is	often	a	good
solution.	A	Service	of	type	NodePort	exports	a	listener	on	every	node	in	the
cluster	that	forwards	traffic	from	the	node’s	IP	address	and	selected	port	into	the
Service	that	you	defined,	as	shown	in	Figure	13-3.

Figure	13-3.	A	NodePort-based	service

Here’s	an	example	YAML	file	for	a	NodePort	service:

apiVersion: v1
kind: Service
metadata:
 name: my-node-port-service
spec:
 type: NodePort
...

Following	the	creation	of	a	Service	of	type	NodePort,	Kubernetes	automatically
selects	a	port	for	the	service;	you	can	get	that	port	from	the	Service	by	looking	at
the	spec.ports[*].nodePort	field.	If	you	want	to	choose	the	port	yourself,
you	can	specify	it	when	you	create	the	service,	but	the	NodePort	must	be	within
the	configured	range	for	the	cluster.	The	default	for	this	range	are	ports	between
30000	and	30999.

Kubernetes’	work	is	done	when	the	service	is	exposed	on	this	port.	To	export	it
to	an	existing	application	outside	of	the	cluster,	you	(or	your	network

administrator)	will	need	to	make	it	discoverable.	Depending	on	the	way	your
application	is	configured,	you	might	be	able	to	give	your	application	a	list	of
${node}:${port}	pairs,	and	the	application	will	perform	client-side	load
balancing.	Alternatively,	you	might	need	to	configure	a	physical	or	virtual	load
balancer	within	your	network	to	direct	traffic	from	a	virtual	IP	address	to	this	list
of	${node}:${port}	backends.	The	specific	details	for	this	configuration	will
be	different	depending	on	your	environment.

Integrating	External	Machines	and	Kubernetes
If	neither	of	the	previous	solutions	work	well	for	you—perhaps	because	you
want	tighter	integration	for	dynamic	service	discovery—the	final	choice	for
exposing	Kubernetes	services	to	outside	applications	is	to	directly	integrate	the
machine(s)	running	the	application	into	the	Kubernetes	cluster’s	service
discovery	and	networking	mechanisms.	This	is	significantly	more	invasive	and
complicated	than	either	of	the	previous	approaches,	and	you	should	use	it	only
when	necessary	for	your	application	(which	should	be	infrequent).	In	some
managed	Kubernetes	environments,	it	might	not	even	be	possible.

When	integrating	an	external	machine	into	the	cluster	for	networking,	you	need
to	ensure	that	the	pod	network	routing	and	DNS-based	service	discovery	both
work	correctly.	The	easiest	way	to	do	this	is	actually	to	run	the	kubelet	on	the
machine	that	you	want	to	join	to	the	cluster,	but	disable	scheduling	in	the	cluster.
Joining	a	kubelet	node	to	a	cluster	is	beyond	of	the	scope	of	this	book,	but	there
are	numerous	other	books	or	online	resources	that	describe	how	to	achieve	this.
When	the	node	is	joined,	you	need	to	immediately	mark	it	as	unschedulable
using	the	kubectl cordon ...	command	to	prevent	any	additional	work	being
scheduled	on	it.	This	cordoning	will	not	prevent	DaemonSets	from	landing	pods
onto	the	node,	and	thus	the	pods	for	both	the	KubeProxy	and	network	routing
will	land	on	the	machine	and	make	Kubernetes-based	services	discoverable	from
any	application	running	on	that	machine.

The	previous	approach	is	quite	invasive	to	the	node	because	it	requires	installing
Docker	or	some	other	container	runtime.	Thus,	it	might	not	be	feasible	in	many
environments.	A	lighter	weight	but	more	complex	approach	is	to	just	run	the
kube-proxy	as	a	process	on	the	machine	and	adjust	the	machine’s	DNS	server.
Assuming	that	you	can	set	up	pod	routing	to	work	correctly,	running	the	kube-

proxy	will	set	up	machine-level	networking	so	that	Kubernetes	Service	virtual
IP	addresses	will	be	remapped	to	the	pods	that	make	up	that	Service.	If	you	also
change	the	machine’s	DNS	to	point	to	the	Kubernetes	cluster	DNS	server,	you
will	have	effectively	enabled	Kubernetes	discovery	on	a	machine	that	is	not	part
of	the	Kubernetes	cluster.

Both	of	these	approaches	are	complicated	and	advanced,	and	you	should	not	take
them	lightly.	If	you	find	yourself	considering	this	level	of	service	discovery
integration,	ask	yourself	whether	it	is	possibly	easier	to	actually	bring	the	service
you	are	connecting	to	the	cluster	into	the	cluster	itself.

Sharing	Services	Between	Kubernetes
The	previous	sections	have	described	how	to	connect	Kubernetes	applications	to
outside	services	and	how	to	connect	outside	services	to	Kubernetes	applications,
but	another	significant	use	case	is	connecting	services	between	Kubernetes
clusters.	This	may	be	to	achieve	East-West	failover	between	different	regional
Kubernetes	clusters,	or	it	might	be	to	link	together	services	run	by	different
teams.	The	process	of	achieving	this	interaction	is	actually	a	combination	of	the
designs	described	in	the	previous	sections.

First,	you	need	to	expose	the	Service	within	the	first	Kubernetes	cluster	to	enable
network	traffic	to	flow.	Let’s	assume	that	you’re	in	a	cloud	environment	that
supports	internal	load	balancers,	and	that	you	receive	a	virtual	IP	address	for	that
internal	load	balancer	of	10.1.10.1.	Next,	you	need	to	integrate	this	virtual	IP
address	into	the	second	Kubernetes	cluster	to	enable	service	discovery.	You
achieve	this	in	the	same	manner	as	importing	an	external	application	into
Kubernetes	(first	section).	You	create	a	selector-less	Service	and	you	set	its	IP
address	to	be	10.1.10.1.	With	these	two	steps	you	have	integrated	service
discovery	and	connectivity	between	services	within	your	two	Kubernetes
clusters.

These	steps	are	fairly	manual,	and	although	this	might	be	acceptable	for	a	small,
static	set	of	services,	if	you	want	to	enable	tighter	or	automatic	service
integration	between	clusters,	it	makes	sense	to	write	a	cluster	daemon	that	runs
in	both	clusters	to	perform	the	integration.	This	daemon	would	watch	the	first
cluster	for	Services	with	a	particular	annotation,	say	something	like

myco.com/exported-service;	all	Services	with	this	annotation	would	then	be
imported	into	the	second	cluster	via	selector-less	services.	Likewise,	the	same
daemon	would	garbage-collect	and	delete	any	services	that	are	exported	into	the
second	cluster	but	are	no	longer	present	in	the	first.	If	you	set	up	such	daemons
in	each	of	your	regional	clusters,	you	can	enable	dynamic,	East-West
connectivity	between	all	clusters	in	your	environment.

Third-Party	Tools
Thus	far,	this	chapter	has	described	the	various	ways	to	import,	export,	and
connect	services	that	span	Kubernetes	clusters	and	some	outside	resource.	If	you
have	previous	experience	with	service	mesh	technologies,	these	concepts	might
seem	quite	familiar	to	you.	Indeed,	there	are	a	variety	of	third-party	tools	and
projects	that	you	can	use	to	interconnect	services	both	with	Kubernetes	and	with
arbitrary	applications	and	machines.	Generally,	these	tools	can	provide	a	lot	of
functionality,	but	they	are	also	significantly	more	complex	operationally	than	the
approaches	described	just	earlier.	However,	if	you	find	yourself	building	more
and	more	networking	interconnectivity,	you	should	explore	the	space	of	service
meshes,	which	is	rapidly	iterating	and	evolving.	Nearly	all	of	these	third-party
tools	have	an	open	source	component,	but	they	also	offer	commercial	support
that	can	reduce	the	operational	overhead	of	running	additional	infrastructure.

Connecting	Cluster	and	External	Services	Best
Practices

Establish	network	connectivity	between	the	cluster	and	on-premises.
Networking	can	be	varied	between	different	sites,	clouds,	and	cluster
configurations,	but	first	ensure	that	pods	can	talk	to	on-premises
machines	and	vice	versa.

To	access	services	outside	of	the	cluster,	you	can	use	selector-less
services	and	directly	program	in	the	IP	address	of	the	machine	(e.g.,	the
database)	with	which	you	want	to	communicate.	If	you	don’t	have	fixed
IP	addressess,	you	can	instead	use	CNAME	services	to	redirect	to	a
DNS	name.	If	you	have	neither	a	DNS	name	nor	fixed	services,	you

might	need	to	write	a	dynamic	operator	that	periodically	synchronizes
the	external	service	IP	addresses	with	the	Kubernetes	Service	endpoints.

To	export	services	from	Kubernetes,	use	internal	load	balancers	or
NodePort	services.	Internal	load	balancers	are	typically	easier	to	use	in
public	cloud	environments	where	they	can	be	bound	to	the	Kubernetes
Service	itself.	When	such	load	balancers	are	unavailable,	NodePort
services	can	expose	the	service	on	all	of	the	machines	in	the	cluster.

You	can	achieve	connections	between	Kubernetes	clusters	through	a
combination	of	these	two	approaches,	exposing	a	service	externally	that
is	then	consumed	as	a	selector-less	service	in	the	other	Kubernetes
cluster.

Summary
In	the	real	world,	not	every	application	is	cloud	native.	Building	applications	in
the	real	world	often	involves	connecting	preexisting	systems	with	newer
applications.	This	chapter	described	how	you	can	integrate	Kubernetes	with
legacy	applications	and	also	how	to	integrate	different	services	running	across
multiple	distinct	Kubernetes	clusters.	Unless	you	have	the	luxury	of	building
something	brand	new,	cloud-native	development	will	always	require	legacy
integration.	The	techniques	described	in	this	chapter	will	help	you	achieve	that.

Chapter	14.	Running	Machine
Learning	in	Kubernetes

The	age	of	microservices,	distributed	systems,	and	the	cloud	has	provided	the
perfect	environmental	conditions	for	the	democratization	of	machine	learning
models	and	tooling.	Infrastructure	at	scale	has	now	become	commoditized,	and
the	tooling	around	the	machine	learning	ecosystem	is	maturing.	It	just	so
happens	that	Kubernetes	is	one	of	the	platforms	that	has	become	increasingly
popular	among	data	scientists	and	the	wider	open	source	community	as	the
perfect	environment	to	enable	the	machine	learning	workflow	and	life	cycle.	In
this	chapter,	we	will	cover	why	Kubernetes	is	a	great	place	for	machine	learning
and	provide	best	practices	for	both	cluster	administrators	and	data	scientists	alike
on	how	to	get	the	most	out	of	Kubernetes	when	running	machine	learning
workloads.	Specifically,	we	focus	on	deep	learning	rather	than	traditional
machine	learning	because	deep	learning	has	fast	become	the	area	of	innovation
on	platforms	like	Kubernetes.

Why	Is	Kubernetes	Great	for	Machine	Learning?
Kubernetes	has	quickly	become	the	home	for	rapid	innovation	in	deep	learning.
The	confluence	of	tooling	and	libraries	such	as	TensorFlow	make	this
technology	more	accessible	to	a	large	audience	of	data	scientists.	What	makes
Kubernetes	such	a	great	place	to	run	your	deep	learning	workloads?	Let’s	cover
what	Kubernetes	provides:

Ubiquitous

Kubernetes	is	everywhere.	All	of	the	major	public	clouds	support	it,	and
there	are	distributions	for	private	clouds	and	infrastructure.	Basing
ecosystem	tooling	on	a	platform	like	Kubernetes	allows	users	to	run	their
deep	learning	workloads	anywhere.

Scalable

Deep	learning	workflows	typically	need	access	to	large	amounts	of
computing	power	in	order	to	efficiently	train	machine	learning	models.
Kubernetes	ships	with	native	autoscaling	capabilities	that	make	it	easy	for
data	scientists	to	achieve	and	fine-tune	the	level	of	scale	they	need	to	train
their	models.

Extensible

Efficiently	training	a	machine	learning	model	typically	requires	access	to
specialized	hardware.	Kubernetes	allows	cluster	administrators	to	quickly
and	easily	expose	new	types	of	hardware	to	the	scheduler	without	having	to
change	the	Kubernetes	source	code.	It	also	allows	custom	resources	and
controllers	to	be	seamlessly	integrated	into	the	Kubernetes	API	to	support
specialized	workflows,	such	as	hyperparameter	tuning.

Self-service

Data	scientists	can	use	Kubernetes	to	perform	self-service	machine	learning
workflows	on	demand,	without	needing	specialized	knowledge	of
Kubernetes	itself.

Portable

Machine	learning	models	can	be	run	anywhere,	provided	that	the	tooling	is
based	on	the	Kubernetes	API.	This	allows	machine	learning	workloads	to	be
portable	across	Kubernetes	providers.

Machine	Learning	Workflow
To	effectively	understand	the	needs	of	deep	learning,	you	must	understand	the
complete	workflow.	Figure	14-1	represents	a	simplified	machine	learning
workflow.

Figure	14-1.	Machine	learning	development	workflow

Figure	14-1	illustrates	that	the	machine	learning	development	workflow	has	the
following	phases:

Dataset	preparation

This	phase	includes	the	storage,	indexing,	cataloging,	and	metadata
associated	with	the	dataset	that	is	used	to	train	the	model.	For	the	purposes	of
this	book,	we	consider	only	the	storage	aspect.	Datasets	vary	in	size,	from
hundreds	of	megabytes	to	hundreds	of	terabytes.	The	dataset	needs	to	be
provided	to	the	model	in	order	for	the	model	to	be	trained.	You	must
consider	storage	that	provides	the	appropriate	properties	to	meet	these	needs.
Typically,	large-scale	block	and	object	stores	are	required	and	must	be
accessible	via	Kubernetes	native	storage	abstractions	or	directly	accessible
APIs.

Machine	learning	algorithm	development

This	is	the	phase	in	which	data	scientists	write,	share,	and	collaborate	on
machine	learning	algorithms.	Open	source	tools	like	JupyterHub	are	easy	to
install	on	Kubernetes	because	they	typically	function	like	any	other
workload.

Training

This	is	the	process	by	which	the	model	will	use	the	dataset	to	learn	how	to
perform	the	tasks	for	which	it	has	been	designed.	The	resulting	artifact	of
training	process	is	usually	a	checkpoint	of	the	trained	model	state.	The
training	process	is	the	piece	that	takes	advantage	of	all	of	the	capabilities	of
Kubernetes	at	the	same	time.	Scheduling,	access	to	specialized	hardware,
dataset	volume	management,	scaling,	and	networking	will	all	be	exercised	in
unison	in	order	to	complete	this	task.	We	cover	more	of	the	specifics	of	the

training	phase	in	the	next	section.

Serving

This	is	the	process	of	making	the	trained	model	accessible	to	service	requests
from	clients	so	that	it	can	make	predictions	based	on	the	the	data	supplied
from	the	client.	For	example,	if	you	have	an	image-recognition	model	that’s
been	trained	to	detect	dogs	and	cats,	a	client	might	submit	a	picture	of	a	dog,
and	the	model	should	be	able	to	determine	whether	it	is	a	dog,	with	a	certain
level	of	accuracy.

Machine	Learning	for	Kubernetes	Cluster
Admins
In	this	section,	we	discuss	topics	you	will	need	to	consider	before	running
machine	learning	workloads	on	your	Kubernetes	cluster.	This	section	is
specifically	targeted	toward	cluster	administrators.	The	largest	challenge	you
will	face	as	a	cluster	administrator	responsible	for	a	team	of	data	scientists	is
understanding	the	terminology.	There	are	myriad	new	terms	that	you	must
become	familiar	with	over	time,	but	rest	assured,	you	can	do	it.	Let’s	take	a	look
at	the	main	problem	areas	you’ll	need	to	address	when	preparing	a	cluster	for
machine	learning	workloads.

Model	Training	on	Kubernetes
Training	machine	learning	models	on	Kubernetes	requires	conventional	CPUs
and	graphics	processing	units	(GPUs).	Typically,	the	more	resources	you	apply,
the	faster	the	training	will	be	completed.	In	most	cases,	model	training	can	be
achieved	on	a	single	machine	that	has	the	required	resources.	Many	cloud
providers	offer	multi-GPU	virtual	machine	(VM)	types,	so	we	recommend
scaling	VMs	vertically	to	four	to	eight	GPUs	before	looking	into	distributed
training.	Data	scientists	use	a	technique	known	as	hyperparameter	tuning	when
training	models.	Hyperparameter	tuning	is	the	process	of	finding	the	optimal	set
of	hyperparameters	for	model	training.	A	hyperparameter	is	simply	a	parameter
that	has	a	set	value	before	the	training	process	begins.	The	technique	involves
running	many	of	the	same	training	jobs	with	a	different	set	of	hyperparameters.

Training	your	first	model	on	Kubernetes
In	this	example,	you	are	going	to	use	the	MNIST	dataset	to	train	an	image-
classification	model.	The	MNIST	dataset	is	publicly	available	and	commonly
used	for	image	classification.

To	train	the	model,	you	are	going	to	need	GPUs.	Let’s	confirm	that	your
Kubernetes	cluster	has	GPUs	available.	The	following	output	shows	that	this
Kubernetes	cluster	has	four	GPUs	available:

$ kubectl get nodes -o yaml | grep -i nvidia.com/gpu
 nvidia.com/gpu: "1"
 nvidia.com/gpu: "1"
 nvidia.com/gpu: "1"
 nvidia.com/gpu: "1"

To	run	your	training,	you	are	going	to	using	the	Job	kind	in	Kubernetes,	given
that	training	is	a	batch	workload.	You	are	going	to	run	your	training	for	500	steps
and	use	a	single	GPU.	Create	a	file	called	mnist-demo.yaml	using	the	following
manifest,	and	save	it	to	your	filesystem:

apiVersion: batch/v1
kind: Job
metadata:
 labels:
 app: mnist-demo
 name: mnist-demo
spec:
 template:
 metadata:
 labels:
 app: mnist-demo
 spec:
 containers:
 - name: mnist-demo
 image: lachlanevenson/tf-mnist:gpu
 args: ["--max_steps", "500"]
 imagePullPolicy: IfNotPresent
 resources:
 limits:
 nvidia.com/gpu: 1
 restartPolicy: OnFailure

Now,	create	this	resource	on	your	Kubernetes	cluster:

$ kubectl create -f mnist-demo.yaml
job.batch/mnist-demo created

Check	the	status	of	the	job	you	just	created:

$ kubectl get jobs
NAME COMPLETIONS DURATION AGE
mnist-demo 0/1 4s 4s

If	you	take	a	look	at	the	pods,	you	should	see	the	training	job	running:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mnist-demo-hv9b2 1/1 Running 0 3s

Looking	at	the	pod	logs,	you	can	see	the	training	happening:

$ kubectl logs mnist-demo-hv9b2
2019-08-06 07:52:21.349999: I tensorflow/core/platform/cpu_feature_guard.cc:137]
Your CPU supports instructions that this TensorFlow binary was not compiled to use:
SSE4.1 SSE4.2 AVX AVX2 FMA
2019-08-06 07:52:21.475416: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030]
Found device 0 with properties:
name: Tesla K80 major: 3 minor: 7 memoryClockRate(GHz): 0.8235
pciBusID: d0c5:00:00.0
totalMemory: 11.92GiB freeMemory: 11.85GiB
2019-08-06 07:52:21.475459: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120]
Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: Tesla K80, pci bus
id: d0c5:00:00.0, compute capability: 3.7)
2019-08-06 07:52:26.134573: I tensorflow/stream_executor/dso_loader.cc:139]
successfully opened CUDA library libcupti.so.8.0 locally
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting /tmp/tensorflow/input_data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting /tmp/tensorflow/input_data/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting /tmp/tensorflow/input_data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting /tmp/tensorflow/input_data/t10k-labels-idx1-ubyte.gz
Accuracy at step 0: 0.1255
Accuracy at step 10: 0.6986
Accuracy at step 20: 0.8205
Accuracy at step 30: 0.8619
Accuracy at step 40: 0.8812
Accuracy at step 50: 0.892
Accuracy at step 60: 0.8913

Accuracy at step 70: 0.8988
Accuracy at step 80: 0.9002
Accuracy at step 90: 0.9097
Adding run metadata for 99
...

Finally,	you	can	see	that	the	training	has	completed	by	looking	at	the	job	status:

$ kubectl get jobs
NAME COMPLETIONS DURATION AGE
mnist-demo 1/1 27s 112s

To	clean	up	the	training	job,	simply	run	the	following	command:

$ kubectl delete -f mnist-demo.yaml
job.batch "mnist-demo" deleted

Congratulations!	You	just	ran	your	first	model	training	job	on	Kubernetes.

Distributed	Training	on	Kubernetes
Distributed	training	is	still	in	its	infancy	and	is	difficult	to	optimize.	Running	a
training	job	that	requires	eight	GPUs	will	almost	always	be	faster	to	train	on	a
single	eight-GPU	machine	compared	to	two	machines	each	with	four	GPUs.	The
only	time	that	you	should	resort	to	using	distributed	training	is	when	the	model
doesn’t	fit	on	the	biggest	machine	available.	If	you	are	certain	that	you	must	run
distributed	training,	it	is	important	to	understand	the	architecture.	Figure	14-2
depicts	the	distributed	TensorFlow	architecture,	and	you	can	see	how	the	model
and	the	parameters	are	distributed.

Figure	14-2.	Distributed	TensorFlow	architecture

Resource	Constraints
Machine	learning	workloads	demand	very	specific	configurations	across	all
aspects	of	your	cluster.	The	training	phases	are	most	certainly	the	most	resource
intensive.	It’s	also	important	to	note,	as	we	mentioned	a	moment	ago,	that
machine	learning	algorithm	training	is	almost	always	a	batch-style	workload.
Specifically,	it	will	have	a	start	time	and	a	finish	time.	The	finish	time	of	a
training	run	depends	on	how	quickly	you	can	meet	the	resource	requirements	of
the	model	training.	This	means	that	scaling	is	almost	certainly	a	quicker	way	to
finish	training	jobs	faster,	but	scaling	has	its	own	set	of	bottlenecks.

Specialized	Hardware
Training	and	serving	a	model	is	almost	always	more	efficient	on	specialized
hardware.	A	typical	example	of	such	specialized	hardware	would	be	commodity
GPUs.	Kubernetes	allows	you	to	access	GPUs	via	device	plug-ins	that	make	the
GPU	resource	known	to	the	Kubernetes	scheduler	and	therefore	able	to	be
scheduled.	There	is	a	device	plug-in	framework	that	facilitates	this	capability,
which	means	that	vendors	do	not	need	to	modify	the	core	Kubernetes	code	to
implement	their	specific	device.	These	device	plug-ins	typically	run	as
DaemonSets	on	each	node,	which	are	processes	that	are	responsible	for
advertising	these	specific	resources	to	the	Kubernetes	API.	Let’s	take	a	look	at

the	NVIDIA	device	plug-in	for	Kubernetes,	which	enables	access	to	NVIDIA
GPUs.	After	they’re	running,	you	can	create	a	pod	as	follows,	and	Kubernetes
will	ensure	that	it	is	scheduled	to	a	node	that	has	these	resource	available:

apiVersion: v1
kind: Pod
metadata:
 name: gpu-pod
spec:
 containers:
 - name: digits-container
 image: nvidia/digits:6.0
 resources:
 limits:
 nvidia.com/gpu: 2 # requesting 2 GPUs

Device	plug-ins	are	not	limited	to	GPUs;	you	can	use	them	wherever	specialized
hardware	is	needed—for	example,	Field	Programmable	Gate	Arrays	(FPGAs)	or
InfiniBand.

Scheduling	idiosyncrasies
It’s	important	to	note	that	Kubernetes	cannot	make	decisions	about	resources
that	it	does	not	have	knowledge	about.	One	of	the	things	you	might	notice	is	that
the	GPUs	are	not	running	at	capacity	when	you	are	training.	You	are	therefore
not	achieving	the	level	of	utilization	that	you	would	like	to	see.	Let’s	consider
the	previous	example;	it	exposes	only	the	number	of	GPU	cores	and	omits	the
number	of	threads	that	can	be	run	per	core.	It	also	doesn’t	expose	which	bus	the
GPU	core	is	on,	so	that	jobs	that	need	access	to	one	another	or	to	the	same
memory	might	be	colocated	on	the	same	Kubernetes	nodes.	These	are	all
considerations	that	might	be	addressed	by	device	plug-ins	in	the	future	but	might
leave	you	wondering	why	you	cannot	get	100%	utilization	on	that	beefy	GPU
you	just	purchased.	It’s	also	worth	mentioning	that	you	cannot	request	fractions
of	GPUs	(for	example,	0.1),	which	means	that	even	if	the	specific	GPU	supports
running	multiple	threads	concurrently,	you	will	not	be	able	to	utilize	that
capacity.

Libraries,	Drivers,	and	Kernel	Modules
To	access	specialized	hardware,	you	typically	need	purpose-built	libraries,

https://oreil.ly/RgKuz

drivers,	and	kernel	modules.	You	will	need	to	ensure	that	these	are	mounted	into
the	container	runtime	so	that	they	are	available	to	the	tooling	running	in	the
container.	You	might	ask,	“Why	don’t	I	just	add	these	to	the	container	image
itself?”	The	answer	is	simple:	the	tools	need	to	match	the	version	on	the
underlying	host	and	must	be	configured	appropriately	for	that	specific	system.
There	are	container	runtimes	such	as	NVIDIA	Docker	that	remove	the	burden	of
having	to	map	host	volumes	into	each	container.	In	lieu	of	having	a	purpose-built
container	runtime,	you	might	also	be	able	to	build	an	admission	webhook	that
provides	the	same	functionality.	It’s	also	important	to	consider	that	you	might
need	privileged	containers	to	access	some	specialized	hardware,	which	also
affects	the	cluster	security	profile.	The	installation	of	the	associated	libraries,
drivers,	and	kernel	modules	might	also	be	facilitated	by	Kubernetes	device	plug-
ins.	Many	device	plug-ins	run	checks	on	each	machine	to	confirm	that	all
installations	have	been	completed	before	they	advertise	the	schedulable	GPU
resources	to	the	Kubernetes	scheduler.

Storage
Storage	is	one	of	the	most	critical	aspects	of	the	machine	learning	workflow.	You
need	to	consider	storage	because	it	directly	affects	the	following	pieces	of	the
machine	learning	workflow:

Dataset	storage	and	distribution	among	worker	nodes	during	training

Checkpoints	and	saving	models

Dataset	storage	and	distribution	among	worker	nodes	during
training
During	training,	the	dataset	must	be	retrievable	by	every	worker	node.	The
storage	needs	are	read-only,	and,	typically,	the	faster	the	disk,	the	better.	The
type	of	disk	that’s	providing	the	storage	is	almost	completely	dependent	on	the
size	of	the	dataset.	Datasets	of	hundreds	of	megabytes	or	gigabytes	might	be
perfect	for	block	storage,	but	datasets	that	are	several	or	hundreds	of	terabytes	in
size	might	be	better	suited	to	object	storage.	Depending	on	the	size	and	location
of	the	disks	that	hold	the	datasets,	there	might	be	a	performance	hit	on	your
networking.

https://oreil.ly/Re0Ef

Checkpoints	and	saving	models
Checkpoints	are	created	as	a	model	is	being	trained,	and	saving	models	allows
you	to	use	them	for	serving.	In	both	cases,	you	need	storage	attached	to	each	of
the	worker	nodes	to	store	this	data.	The	data	is	typically	stored	under	a	single
directory,	and	each	worker	node	is	writing	to	a	specific	checkpoint	or	save	file.
Most	tools	expect	the	checkpoint	and	save	data	to	be	in	a	single	location	and
require	ReadWriteMany.	ReadWriteMany	simply	means	that	the	volume	can	be
mounted	as	read-write	by	many	nodes.	When	using	Kubernetes
PersistentVolumes,	you	will	need	to	determine	the	best	storage	platform	for	your
needs.	The	Kubernetes	documentation	keeps	a	list	of	volume	plug-ins	that
support	ReadWriteMany.

Networking
The	training	phase	of	the	machine	learning	workflow	has	a	large	impact	on	the
network	(specifically,	when	running	distributed	training).	If	we	consider
TensorFlow’s	distributed	architecture,	there	are	two	discrete	phases	to	consider
that	create	a	lot	of	network	traffic:	variable	distribution	from	each	of	the
parameter	servers	to	each	of	the	worker	nodes,	and	also	the	application	of
gradients	from	each	worker	node	back	to	the	parameter	server	(see	Figure	14-2).
The	time	it	takes	for	this	exchange	to	happen	directly	affects	the	time	it	takes	to
train	a	model.	So,	it’s	a	simple	game	of	the	faster,	the	better	(within	reason,	of
course).	With	most	public	clouds	and	servers	today	supporting	1-Gbps,	10-Gbps,
and	sometimes	40-Gbps	network	interface	cards,	generally	network	bandwidth	is
only	a	concern	at	lower	bandwidths.	You	might	also	consider	InfiniBand	if	you
need	high	network	bandwidth.

While	raw	network	bandwidth	is	more	often	than	not	a	limiting	factor,	there	are
also	instances	for	which	getting	the	data	onto	the	wire	from	the	kernel	in	the	first
place	is	the	problem.	There	are	open	source	projects	that	take	advantage	of
Remote	Direct	Memory	Access	(RDMA)	to	further	accelerate	network	traffic
without	the	need	to	modify	your	worker	nodes	or	application	code.	RDMA
allows	computers	in	a	network	to	exchange	data	in	main	memory	without	using
the	processor,	cache,	or	operating	system	of	either	computer.	You	might	consider
the	open	source	project	Freeflow,	which	boasts	of	having	high	network
performance	for	container	network	overlays.

https://oreil.ly/aMjGd
https://oreil.ly/3RBNS

Specialized	Protocols
There	are	other	specialized	protocols	that	you	can	consider	when	using	machine
learning	on	Kubernetes.	These	protocols	are	often	vendor	specific,	but	they	all
seek	to	address	distributed	training	scaling	issues	by	removing	areas	of	the
architecture	that	quickly	become	bottlenecks,	for	example,	parameter	servers.
These	protocols	often	allow	the	direct	exchange	of	information	between	GPUs
on	multiple	nodes	without	the	need	to	involve	the	node	CPU	and	OS.	Here	are	a
couple	that	you	might	want	to	look	into	to	more	efficiently	scale	your	distributed
training:

Message	Passing	Interface	(MPI)	is	a	standardized	portable	API	for	the
transfer	of	data	between	distributed	processes.

NVIDIA	Collective	Communications	Library	(NCCL)	is	a	library	of
topology-aware	multi-GPU	communication	primitives.

Data	Scientist	Concerns
In	the	previous	discussion,	we	shared	considerations	that	you	need	to	make	in
order	to	be	able	to	run	machine	learning	workloads	on	your	Kubernetes	cluster.
But	what	about	the	data	scientist?	Here	we	cover	some	popular	tools	that	make	it
easy	for	data	scientists	to	utilize	Kubernetes	for	machine	learning	without	having
to	be	a	Kubernetes	expert.

Kubeflow	is	a	machine	learning	toolkit	for	Kubernetes.	It	is	native	to
Kubernetes	and	ships	with	several	tools	necessary	to	complete	the
machine	learning	workflow.	Tools	such	as	Jupyter	Notebooks,	pipelines,
and	Kubernetes-native	controllers	make	it	simple	and	easy	for	data
scientists	to	get	the	most	out	of	Kubernetes	as	a	platform	for	machine
learning.

Polyaxon	is	a	tool	for	managing	machine	learning	workflows	that
supports	many	popular	libraries	and	runs	on	any	Kubernetes	cluster.
Polyaxon	has	both	commercial	and	open	source	offerings.

Pachyderm	is	an	enterprise-ready	data	science	platform	that	has	a	rich
suite	of	tools	for	dataset	preparation,	life	cycle,	and	versioning	along

https://www.kubeflow.org/
https://polyaxon.com/
https://www.pachyderm.io/

with	the	ability	to	build	machine	learning	pipelines.	Pachyderm	has	a
commercial	offering	that	you	can	deploy	to	any	Kubernetes	cluster.

Machine	Leaning	on	Kubernetes	Best	Practices
To	achieve	optimal	performance	for	your	machine	learning	workloads,	consider
the	following	best	practices:

Smart	scheduling	and	autoscaling.	Given	that	most	stages	of	the
machine	learning	workflow	are	batch	by	nature,	we	recommend	that
you	utilize	a	Cluster	Autoscaler.	GPU-enabled	hardware	is	costly,	and
you	certainly	do	not	want	to	be	paying	for	it	when	it’s	not	in	use.	We
recommend	batching	jobs	to	run	at	specific	times	using	either	taints	and
tolerations	or	via	a	time-specific	Cluster	Autoscaler.	That	way,	the
cluster	can	scale	to	the	needs	of	the	machine	learning	workloads	when
needed,	and	not	a	moment	sooner.	Regarding	taints	and	tolerations,
upstream	convention	is	to	taint	the	node	with	the	extended	resource	as
the	key.	For	example,	a	node	with	NVIDIA	GPUs	should	be	tainted	as
follows:	Key: nvidia.com/gpu, Effect: NoSchedule.	Using	this
method	means	that	you	can	also	utilize	the
ExtendedResourceToleration	admission	controller,	which	will
automatically	add	the	appropriate	tolerations	for	such	taints	to	pods
requesting	extended	resources	so	that	the	users	don’t	need	to	manually
add	them.

The	truth	is	that	model	training	is	a	delicate	balance.	Allowing	things	to
move	faster	in	one	area	often	leads	to	bottlenecks	in	others.	It’s	an
endeavor	of	constant	observation	and	tuning.	As	a	general	rule	of
thumb,	we	recommend	that	you	try	to	make	the	GPU	become	the
bottleneck	because	it	is	the	most	costly	resource.	Keep	your	GPUs
saturated.	Be	prepared	to	always	be	on	the	lookout	for	bottlenecks,	and
set	up	your	monitoring	to	track	the	GPU,	CPU,	network,	and	storage
utilization.

Mixed	workload	clusters.	Clusters	that	are	used	to	run	the	day-to-day
business	services	might	also	be	used	for	the	purposes	of	machine

learning.	Given	the	high	performance	requirements	of	machine	learning
workloads,	we	recommend	using	a	separate	node	pool	that’s	tainted	to
accept	only	machine	learning	workloads.	This	will	help	protect	the	rest
of	the	cluster	from	any	impact	from	the	machine	learning	workloads
running	on	the	machine	learning	node	pool.	Furthermore,	you	should
consider	multiple	GPU-enabled	node	pools,	each	with	different
performance	characteristics	to	suit	the	workload	types.	We	also
recommend	enabling	node	autoscaling	on	the	machine	learning	node
pool(s).	Use	mixed	mode	clusters	only	after	you	have	a	solid
understanding	of	the	performance	impact	that	your	machine	learning
workloads	have	on	your	cluster.

Achieving	linear	scaling	with	distributed	training.	This	is	the	holy	grail
of	distributed	model	training.	Most	libraries	unfortunately	don’t	scale	in
a	linear	fashion	when	distributed.	There	is	lots	of	work	being	done	to
make	scaling	better,	but	it’s	important	to	understand	the	costs	because
this	isn’t	as	simple	as	throwing	more	hardware	at	the	problem.	In	our
experience,	it’s	almost	always	the	model	itself	and	not	the	infrastructure
supporting	it	that	is	the	source	of	the	bottleneck.	It	is,	however,
important	to	review	the	utilization	of	the	GPU,	CPU,	network,	and
storage	before	pointing	fingers	at	the	model	itself.	Open	source	tools
such	as	Horovod	seek	to	improve	distributed	training	frameworks	and
provide	better	model	scaling.

Summary
We’ve	covered	a	lot	of	ground	in	this	chapter	and	have	hopefully	provided
valuable	insight	into	why	Kubernetes	is	a	great	platform	for	machine	learning,
especially	deep	learning,	and	the	considerations	you	need	to	be	aware	of	before
deploying	your	first	machine	learning	workload.	If	you	exercise	the
recommendations	in	this	chapter,	you	will	be	well	equipped	to	build	and
maintain	a	Kubernetes	cluster	for	these	specialized	workloads.

https://github.com/horovod/horovod

Chapter	15.	Building	Higher-Level
Application	Patterns	on	Top	of
Kubernetes

Kubernetes	is	a	complex	system.	Although	it	simplifies	the	deployment	and
operations	of	distributed	applications,	it	does	little	to	make	the	development	of
such	systems	easy.	Indeed,	in	adding	new	concepts	and	artifacts	for	the
developer	to	interact	with,	it	adds	an	additional	layer	of	complexity	in	the	service
of	simplified	operations.	Consequently,	in	many	environments,	it	makes	sense	to
develop	higher-level	abstractions	in	order	to	provide	more	developer-friendly
primitives	on	top	of	Kubernetes.	Additionally,	in	many	large	companies,	it
makes	sense	to	standardize	the	way	in	which	applications	are	configured	and
deployed	so	that	everyone	adheres	to	the	same	operational	best	practices.	This
can	also	be	achieved	by	developing	higher-level	abstractions	so	that	developers
automatically	adhere	to	these	principles.	However,	developing	these	abstractions
can	hide	important	details	from	the	developer	and	might	introduce	a	walled
garden	that	limits	or	complicates	the	development	of	certain	applications	or	the
integration	of	existing	solutions.	Throughout	the	development	of	the	cloud,	the
tension	between	the	flexibility	of	infrastructure	and	the	power	of	the	platform
has	been	a	constant.	Designing	the	proper	higher-level	abstractions	enables	us	to
walk	an	ideal	path	through	this	divide.

Approaches	to	Developing	Higher-Level
Abstractions
When	considering	how	to	develop	a	higher-level	primitive	on	top	of	Kubernetes,
there	are	two	basic	approaches.	The	first	is	to	wrap	up	Kubernetes	as	an
implementation	detail.	With	this	approach,	developers	who	consume	your
platform	should	be	largely	unaware	that	they	are	running	on	top	of	Kubernetes;
instead,	they	should	think	of	themselves	as	consumers	of	the	platform	you
supply,	and	thus	Kubernetes	is	an	implementation	detail.

The	second	option	is	to	use	the	extensibility	capabilities	built	into	Kubernetes
itself.	The	Kubernetes	Server	API	is	quite	flexible,	and	you	can	dynamically	add
arbitrary	new	resources	to	the	Kubernetes	API	itself.	With	this	approach,	your
new	higher-level	resources	coexist	alongside	the	built-in	Kubernetes	objects,	and
the	users	use	the	built-in	tooling	for	interacting	with	all	of	the	Kubernetes
resources,	both	built-in	ones	and	extensions.	This	extension	model	results	in	an
environment	in	which	Kubernetes	is	still	front	and	center	for	your	developers	but
with	additions	that	reduce	complexity	and	make	it	easier	to	use.

Given	the	two	approaches,	how	do	you	choose	the	one	that	is	appropriate?	It
really	depends	on	the	goals	for	the	abstraction	layer	that	you	are	building.	If	you
are	constructing	a	fully	isolated,	integrated	environment	in	which	you	have
strong	confidence	that	users	will	not	need	to	“break	glass”	and	escape,	and
where	ease	of	use	is	an	important	characteristic,	the	first	option	is	a	great	choice.
A	good	example	of	such	a	use	case	would	be	building	a	machine	learning
pipeline.	The	domain	is	relatively	well	understood.	The	data	scientists	who	are
your	users	are	likely	not	familiar	with	Kubernetes.	Enabling	these	data	scientists
to	rapidly	get	their	work	done	and	focus	on	their	domains	rather	than	distributed
systems	is	the	primary	goal.	Thus,	building	a	complete	abstraction	on	top	of
Kubernetes	makes	the	most	sense.

On	the	other	hand,	when	building	a	higher-level	developer	abstraction—for
example,	an	easy	way	to	deploy	Java	applications—it	is	a	far	better	choice	to
extend	Kubernetes	rather	than	wrap	it.	The	reason	for	this	is	two-fold.	First,	the
domain	of	application	development	is	extraordinarily	broad.	It	will	be	difficult
for	you	to	anticipate	all	of	the	requirements	and	use	cases	for	your	developers,
especially	as	the	applications	and	business	iterate	and	change	over	time.	The
other	reason	is	to	ensure	that	you	can	continue	to	take	advantage	of	the
Kubernetes	ecosystem	of	tools.	There	are	countless	cloud-native	tools	for
monitoring,	continuous	delivery,	and	more.	Extending	rather	than	replacing	the
Kubernetes	API	ensures	that	you	can	continue	to	use	these	tools	and	new	ones	as
they	are	developed.

Extending	Kubernetes
Because	every	layer	that	you	might	build	over	Kubernetes	is	unique,	it	is	beyond

the	scope	of	this	book	to	describe	how	you	might	build	such	a	layer.	But	the
tools	and	techniques	for	extending	Kubernetes	are	generic	to	any	construction
you	might	do	on	top	of	Kubernetes,	and,	thus,	we’ll	spend	time	covering	them.

Extending	Kubernetes	Clusters
A	complete	how-to	for	extending	a	Kubernetes	cluster	is	a	large	topic	and	more
completely	covered	in	other	books	like	Managing	Kubernetes	and	Kubernetes:
Up	and	Running	(O’Reilly).	Rather	than	going	over	the	same	material	here,	this
section	focuses	on	providing	an	understanding	of	how	to	use	Kubernetes
extensibility.	Extending	the	Kubernetes	cluster	involves	understanding	the	touch
points	for	resources	in	Kubernetes.	There	are	three	related	technical	solutions.
The	first	is	the	sidecar.	Sidecar	containers	(shown	in	Figure	15-1)	have	been
popularized	in	the	context	of	service	meshes.	They	are	containers	that	run
alongside	a	main	application	container	to	provide	additional	capabilities	that	are
decoupled	from	the	main	application	and	often	maintained	by	a	separate	team.
For	example,	in	service	meshes,	a	sidecar	might	provide	transparent	mutual
Transport	Layer	Security	(mTLS)	authentication	to	a	containerized	application.

Figure	15-1.	The	sidecar	design

You	can	use	sidecars	to	add	capabilities	to	your	user-defined	applications.

Of	course,	the	entire	goal	of	this	effort	was	to	make	a	developer’s	life	easier,	but
if	we	require	that	they	learn	about	and	know	how	to	use	sidecars,	we’ve	actually
made	the	problem	worse.	Fortunately,	there	are	additional	tools	for	extending
Kubernetes	that	simplify	things.	In	particular,	Kubernetes	features	admission
controllers.	Admission	controllers	are	interceptors	that	read	Kubernetes	API
requests	prior	to	them	being	stored	(or	“admitted”)	into	the	cluster’s	backing

https://oreil.ly/6kUUX
https://oreil.ly/fdRA3

store.	You	can	use	these	admission	controllers	to	validate	or	modify	API	objects.
In	the	context	of	sidecars,	you	can	use	them	to	automatically	add	sidecars	to	all
pods	created	in	the	cluster	so	that	developers	do	not	need	to	know	about	the
sidecars	in	order	to	reap	their	benefits.	Figure	15-2	illustrates	how	admission
controllers	interact	with	the	Kubernetes	API.

Figure	15-2.	Admission	controllers

The	utility	of	admission	controllers	isn’t	limited	to	adding	sidecars.	You	can	also
use	them	to	validate	objects	submitted	by	developers	to	Kubernetes.	For
example,	you	could	implement	a	linter	for	Kubernetes	that	ensures	developers
submit	pods	and	other	resources	that	follow	best	practices	for	using	Kubernetes.
A	common	mistake	for	developers	is	to	not	reserve	resources	for	their
application.	For	those	circumstances,	an	admission	controller-based	linter	could
intercept	such	requests	and	reject	them.	Of	course,	you	should	also	leave	an
escape	hatch	(for	example,	a	special	annotation)	so	that	advanced	users	can	opt
out	of	the	lint	rule,	as	appropriate.	We	discuss	the	importance	of	escape	hatches
later	on	in	the	chapter.

So	far,	we’ve	only	covered	ways	to	augment	existing	applications	and	to	ensure
that	developers	follow	best	practices—we	haven’t	really	covered	how	to	add
higher-level	abstractions.	This	is	where	custom	resource	definitions	(CRDs)
come	into	play.	CRDs	are	a	way	to	dynamically	add	new	resources	to	an	existing
Kubernetes	cluster.	For	example,	using	CRDs,	you	could	add	a	new
ReplicatedService	resource	to	a	Kubernetes	cluster.	When	a	developer	creates	an
instance	of	a	ReplicatedService,	it	turns	around	to	Kubernetes	and	creates
corresponding	Deployment	and	Service	resources.	Thus,	the	ReplicatedService
is	a	convenient	developer	abstraction	for	a	common	pattern.	CRDs	are	generally
implemented	by	a	control	loop	that	is	deployed	into	the	cluster	itself	to	manage
these	new	resource	types.

Extending	the	Kubernetes	User	Experience
Adding	new	resources	to	your	cluster	is	a	great	way	to	provide	new	capabilities,
but	to	truly	take	advantage	of	them,	it’s	often	useful	to	extend	the	Kubernetes
user	experience	(UX)	as	well.	By	default,	the	Kubernetes	tooling	is	unaware	of
custom	resources	and	other	extensions	and	thus	treats	them	in	a	very	generic	and
not	particularly	user-friendly	manner.	Extending	the	Kuberentes	command	line
can	provide	an	enhanced	user	experience.

Generally,	the	tool	used	for	accessing	Kubernetes	is	the	kubectl	command-line
tool.	Fortunately,	it	too	has	been	built	for	extensibility.	kubectl	plug-ins	are
binaries	that	have	a	name	like	kubectl-foo,	where	foo	is	the	name	of	the	plug-
in.	When	you	invoke	kubectl foo ...	on	the	command	line,	the	invocation	is
in	turn	routed	to	an	invocation	of	the	plug-in	binary.	Using	kubectl	plug-ins,
you	can	define	new	experiences	that	deeply	understand	the	new	resources	that
you	have	added	to	your	cluster.	You	are	free	to	implement	whatever	kind	of
experiences	are	suitable	while	at	the	same	time	taking	advantage	of	the
familiarity	of	the	kubectl	tooling.	This	is	especially	valuable	because	it	means
that	you	don’t	need	to	teach	developers	about	a	new	tool	set.	Likewise,	you	can
gradually	introduce	Kubernetes-native	concepts	as	the	developers	advance	their
Kubernetes	knowledge.

Design	Considerations	When	Building	Platforms
Countless	platforms	have	been	built	to	enable	developer	productivity.	Given	the
opportunity	to	observe	all	of	the	places	where	these	platforms	have	succeeded
and	failed,	you	can	develop	a	common	set	of	patterns	and	considerations	so	as	to
learn	from	the	experience	of	others.	Following	these	design	guidelines	can	help
to	ensure	that	the	platform	you	build	is	a	successful	one	instead	of	a	“legacy”
dead	end	from	which	you	must	eventually	move	away.

Support	Exporting	to	a	Container	Image
When	building	a	platform,	many	designs	provide	simplicity	by	enabling	the	user
to	simply	supply	code	(e.g.,	a	function	in	Function	as	a	Service	[FaaS])	or	a
native	package	(e.g.,	a	JAR	file	in	Java)	instead	of	a	complete	container	image.

This	approach	has	a	great	deal	of	appeal	because	it	lets	the	user	stay	within	the
confines	of	their	well-understood	tools	and	development	experience.	The
platform	handles	the	containerization	of	the	application	for	them.

The	problem	with	this	approach,	however,	comes	when	the	developer	encounters
the	limitations	of	the	programming	environment	that	you	have	given	them.
Perhaps	it’s	because	they	need	a	specific	version	of	a	language	runtime	to	work
around	a	bug.	Or	it	might	be	that	they	need	to	package	additional	resources	or
executables	that	aren’t	part	of	the	way	you	have	structured	the	automatic
containerazation	of	the	application.

No	matter	the	reason,	hitting	this	wall	is	an	ugly	moment	for	the	developer,
because	it	is	a	moment	when	they	suddenly	must	learn	a	great	deal	more	about
how	to	package	their	application,	when	all	they	really	wanted	to	do	was	to
extend	it	slightly	to	fix	a	bug	or	deliver	a	new	feature.

However,	it	doesn’t	need	to	be	this	way.	If	you	support	the	exporting	of	your
platform’s	programming	environment	into	a	generic	container,	the	developer
using	your	platform	doesn’t	need	to	start	from	scratch	and	learn	everything	there
is	to	know	about	containers.	Instead,	they	have	a	complete,	working	container
image	that	represents	their	current	application	(e.g.,	the	container	image
containing	their	function	and	the	node	runtime).	Given	this	starting	point,	they
can	then	make	the	small	tweaks	necessary	to	adapt	the	container	image	to	their
needs.	This	sort	of	gradual	degradation	and	incremental	learning	dramatically
smoothes	out	the	path	from	higher-level	platform	down	into	lower-level
infrastructure	and	thus	increases	the	general	utility	of	the	platform	because	using
it	doesn’t	introduce	steep	cliffs	for	developers.

Support	Existing	Mechanisms	for	Service	and	Service
Discovery
Another	common	story	of	platforms	is	that	they	evolve	and	interconnect	with
other	systems.	Many	developers	might	be	very	happy	and	productive	in	your
platform,	but	any	real-world	application	will	span	both	the	platform	that	you
build	and	lower-level	Kubernetes	applications	as	well	as	other	platforms.
Connections	to	legacy	databases	or	open	source	applications	built	for	Kubernetes
will	always	become	a	part	of	a	sufficiently	large	application.

Because	of	this	need	for	interconnectivity,	it’s	critically	important	that	the	core
Kubernetes	primitives	for	services	and	service	discovery	are	used	and	exposed
by	any	platform	that	you	construct.	Don’t	reinvent	the	wheel	in	the	interest	of
improved	platform	experience,	because	in	doing	so	you	will	be	creating	a	walled
garden	incapable	of	interacting	with	the	broader	world.

If	you	expose	the	applications	defined	in	your	platform	as	Kubernetes	Services,
any	application	anywhere	within	your	cluster	will	be	able	to	consume	your
applications	regardless	of	whether	they	are	running	in	your	higher-level
platform.	Likewise,	if	you	use	the	Kubernetes	DNS	servers	for	service	discovery,
you	will	be	able	to	connect	from	your	higher-level	application	platform	to	other
applications	running	in	the	cluster,	even	if	they	are	not	defined	in	your	higher-
level	platform.	It	might	be	tempting	to	build	something	better	or	easier	to	use,
but	interconnectivity	across	different	platforms	is	the	common	design	pattern	for
any	application	of	sufficient	age	and	complexity.	You	will	always	regret	the
decision	to	build	a	walled	garden.

Building	Application	Platforms	Best	Practices
Although	Kubernetes	provides	powerful	tools	for	operating	software,	it	does
considerably	less	to	enable	developers	to	build	applications.	Thus,	it	is	often
necessary	to	build	platforms	on	top	of	Kubernetes	to	make	developers	more
productive	and/or	Kubernetes	easier.	When	building	such	platforms,	you’ll
benefit	from	keeping	the	following	best	practices	in	mind:

Use	admission	controllers	to	limit	and	modify	API	calls	to	the	cluster.
An	admission	controller	can	validate	(and	reject	invalid)	Kubernetes
resources.	A	mutating	admission	controller	can	automatically	modify
API	resources	to	add	new	sidecars	or	other	changes	that	users	might	not
even	need	to	know	about.

Use	kubectl	plug-ins	to	extend	the	Kubernetes	user	experience	by
adding	new	tools	to	the	familiar	existing	command-line	tool.	In	rare
occasions,	a	purpose-built	tool	might	be	more	appropriate.

When	building	platforms	on	top	of	Kubernetes,	think	carefully	about
the	users	of	the	platform	and	how	their	needs	will	evolve.	Making

things	simple	and	easy	to	use	is	clearly	a	good	goal,	but	if	this	also	leads
to	users	that	are	trapped	and	unable	to	be	successful	without	rewriting
everything	outside	of	your	platform,	it	will	ultimately	be	a	frustrating
(and	unsuccessful)	experience.

Summary
Kubernetes	is	a	fantastic	tool	for	simplifying	the	deployment	and	operation	of
software,	but	unfortunately,	it	is	not	always	the	most	developer-friendly	or
productive	environment.	Because	of	this,	a	common	task	is	to	build	a	higher-
level	platform	on	top	of	Kubernetes	in	order	to	make	it	more	approachable	and
usable	by	the	average	developer.	This	chapter	described	several	approaches	for
designing	such	a	higher-level	system	and	provided	a	summary	of	the	core
extensibility	infrastructure	that	is	available	in	Kubernetes.	It	concluded	with
lessons	and	design	principles	drawn	from	our	observation	of	other	platforms	that
have	been	built	on	top	of	Kubernetes,	with	the	hope	that	they	can	guide	the
design	of	your	platform.

Chapter	16.	Managing	State	and
Stateful	Applications

In	the	early	days	of	container	orchestration,	the	targeted	workloads	were	usually
stateless	applications	that	used	external	systems	to	store	state	if	necessary.	The
thought	was	that	containers	are	very	temporal,	and	orchestration	of	the	backing
storage	needed	to	keep	state	in	a	consistent	manner	was	difficult	at	best.	Over
time	the	need	for	container-based	workloads	that	kept	state	became	a	reality	and,
in	select	cases,	might	be	more	performant.	Kubernetes	adapted	over	many
iterations	to	not	only	allow	for	storage	volumes	mounted	into	the	pod,	but	those
volumes	being	managed	by	Kubernetes	directly	was	an	important	component	in
orchestration	of	storage	with	the	workloads	that	require	it.

If	the	ability	to	mount	an	external	volume	to	the	container	was	enough,	many
more	examples	of	stateful	applications	running	at	scale	in	Kubernetes	would
exist.	The	reality	is	that	volume	mounting	is	the	easy	component	in	the	grand
scheme	of	stateful	applications.	The	majority	of	applications	that	require	state	to
be	maintained	after	node	failure	are	complicated	data-state	engines	such	as
relational	database	systems,	distributed	key/value	stores,	and	complicated
document	management	systems.	This	class	of	applications	requires	more
coordination	between	how	members	of	the	clustered	application	communicate
with	one	another,	how	the	members	are	identified,	and	the	order	in	which
members	either	appear	or	disappear	into	the	system.

This	chapter	focuses	on	best	practices	for	managing	state,	from	simple	patterns
such	as	saving	a	file	to	a	network	share,	to	complex	data	management	systems
like	MongoDB,	mySQL,	or	Kafka.	There	is	a	small	section	on	a	new	pattern	for
complex	systems	called	Operators	that	brings	not	only	Kubernetes	primitives,
but	allows	for	business	or	application	logic	to	be	added	as	custom	controllers
that	can	help	make	operating	complex	data	management	systems	easier.

Volumes	and	Volume	Mounts

Not	every	workload	that	requires	a	way	to	maintain	state	needs	to	be	a	complex
database	or	high	throughput	data	queue	service.	Often,	applications	that	are
being	moved	to	containerized	workloads	expect	certain	directories	to	exist	and
read	and	write	pertinent	information	to	those	directories.	The	ability	to	inject
data	into	a	volume	that	can	be	read	by	containers	in	a	pod	is	covered	in
Chapter	5;	however,	data	mounted	from	ConfigMaps	or	secrets	is	usually	read-
only,	and	this	section	focuses	on	giving	containers	volumes	that	can	be	written	to
and	will	survive	a	container	failure	or,	even	better,	a	pod	failure.

Every	major	container	runtime,	such	as	Docker,	rkt,	CRI-O,	and	even
Singularity,	allows	for	mounting	volumes	into	a	container	that	is	mapped	to	an
external	storage	system.	At	its	simplest,	external	storage	can	be	a	memory
location,	a	path	on	the	container’s	host,	or	an	external	filesystem	such	as	NFS,
Glusterfs,	CIFS,	or	Ceph.	Why	would	this	be	needed,	you	might	wonder?	A
useful	example	is	that	of	a	legacy	application	that	was	written	to	log	application-
specific	information	to	a	local	filesystem.	There	are	many	possible	solutions
including,	but	not	limited	to,	updating	the	application	code	to	log	out	to	a
stdout	or	stderr	sidecar	container	that	can	stream	log	data	to	an	outside	source
via	a	shared	pod	volume	or	using	a	host-based	logging	tool	that	can	read	a
volume	for	both	host	logs	and	container	application	logs.	The	last	scenario	can
be	attained	by	using	a	volume	mount	in	the	container	using	a	Kubernetes
hostPath	mount,	as	shown	in	the	following:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-webserver
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx-webserver
 template:
 metadata:
 labels:
 app: nginx-webserver
 spec:
 containers:
 - name: nginx-webserver
 image: nginx:alpine
 ports:

 - containerPort: 80
 volumeMounts:
 - name: hostvol
 mountPath: /usr/share/nginx/html
 volumes:
 - name: hostvol
 hostPath:
 path: /home/webcontent

Volume	Best	Practices

Try	to	limit	the	use	of	volumes	to	pods	requiring	multiple	containers
that	need	to	share	data,	for	example	adapter	or	ambassador	type
patterns.	Use	the	emptyDir	for	those	types	of	sharing	patterns.

Use	hostDir	when	access	to	the	data	is	required	by	node-based	agents
or	services.

Try	to	identify	any	services	that	write	their	critical	application	logs	and
events	to	local	disk,	and	if	possible	change	those	to	stdout	or	stderr
and	let	a	true	Kubernetes-aware	log	aggregation	system	stream	the	logs
instead	of	leveraging	the	volume	map.

Kubernetes	Storage
The	examples	so	far	show	basic	volume	mapping	into	a	container	in	a	pod,
which	is	just	a	basic	container	engine	capability.	The	real	key	is	allowing
Kubernetes	to	manage	the	storage	backing	the	volume	mounts.	This	allows	for
more	dynamic	scenarios	where	pods	can	live	and	die	as	needed,	and	the	storage
backing	the	pod	will	transition	accordingly	to	wherever	the	pod	may	live.
Kubernetes	manages	storage	for	pods	using	two	distinct	APIs,	the
PersistentVolume	and	PersistentVolumeClaim.

PersistentVolume
It	is	best	to	think	of	a	PersistentVolume	as	a	disk	that	will	back	any	volumes	that
are	mounted	to	a	pod.	A	PersistentVolume	will	have	a	claim	policy	that	will
define	the	scope	of	life	of	the	volume	independent	of	the	life	cycle	of	the	pod
that	uses	the	volume.	Kubernetes	can	use	either	dynamic	or	statically	defined

volumes.	To	allow	for	dynamically	created	volumes,	there	must	be	a
StorageClass	defined	in	Kubernetes.	PersistentVolumes	can	be	created	in	the
cluster	of	varying	types	and	classes,	and	only	when	a	PersistentVolumeClaim
matches	the	PersistentVolume	will	it	actually	be	assigned	to	a	pod.	The	volume
itself	is	backed	by	a	volume	plug-in.	There	are	numerous	plug-ins	supported
directly	in	Kubernetes,	and	each	has	different	configuration	parameters	to	adjust:

apiVersion: v1
kind: PersistentVolume
metadata:
name: pv001
labels:
 tier: "silver"
spec:
capacity:
 storage: 5Gi
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Recycle
storageClassName: nfs
mountOptions:
 - hard
 - nfsvers=4.1
nfs:
 path: /tmp
 server: 172.17.0.2

PersistentVolumeClaims
PersistentVolumeClaims	are	a	way	to	give	Kubernetes	a	resource	requirement
definition	for	storage	that	a	pod	will	use.	Pods	will	reference	the	claim,	and	then
if	a	persistentVolume	that	matches	the	claim	request	exists,	it	will	allocate	that
volume	to	that	specific	pod.	At	minimum,	a	storage	request	size	and	access
mode	must	be	defined,	but	a	specific	StorageClass	can	also	be	defined.	Selectors
can	also	be	used	to	match	certain	PersistentVolumes	that	meet	a	certain	criteria
will	be	allocated:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: my-pvc
spec:
 storageClass: nfs

 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 5Gi
 selector:
 matchLabels:
 tier: "silver"

The	preceding	claim	will	match	the	PersistentVolume	created	earlier	because	the
storage	class	name,	the	selector	match,	the	size,	and	the	access	mode	are	all
equal.

Kubernetes	will	match	up	the	PersistentVolume	with	the	claim	and	bind	them
together.	Now	to	use	the	volume,	the	pod.spec	should	just	reference	the	claim
by	name,	as	follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-webserver
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx-webserver
 template:
 metadata:
 labels:
 app: nginx-webserver
 spec:
 containers:
 - name: nginx-webserver
 image: nginx:alpine
 ports:
 - containerPort: 80
 volumeMounts:
 - name: hostvol
 mountPath: /usr/share/nginx/html
 volumes:
 - name: hostvol
 persistentVolumeClaim:
 claimName: my-pvc

Storage	Classes

Instead	of	manually	defining	the	PersistentVolumes	ahead	of	time,
administrators	might	elect	to	create	StorageClass	objects,	which	define	the
volume	plug-in	to	use	and	any	specific	mount	options	and	parameters	that	all
PersistentVolumes	of	that	class	will	use.	This	then	allows	the	claim	to	be	defined
with	the	specific	StorageClass	to	use,	and	Kubernetes	will	dynamically	create
the	PersistentVolume	based	on	the	StorageClass	parameters	and	options:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: nfs
provisioner: cluster.local/nfs-client-provisioner
parameters:
 archiveOnDelete: True

Kubernetes	also	allows	operators	to	create	a	default	storage	class	using	the
DefaultStorageClass	admission	plug-in.	If	this	has	been	enabled	on	the	API
server,	then	a	default	StorageClass	can	be	defined	and	any
PersistentVolumeClaims	that	do	not	explicitly	define	a	StorageClass.	Some
cloud	providers	will	include	a	default	storage	class	to	map	to	the	cheapest
storage	allowed	by	their	instances.

Container	Storage	Interface	and	FlexVolume
Often	referred	to	as	“Out-of-Tree”	volume	plug-ins,	the	Container	Storage
Interface	(CSI)	and	FlexVolume	enable	storage	vendors	to	create	custom	storage
plug-ins	without	the	need	to	wait	for	direct	code	additions	to	the	Kubernetes
code	base	like	most	volume	plug-ins	today.

The	CSI	and	FlexVolume	plug-ins	are	deployed	on	Kubernetes	clusters	as
extensions	by	operators	and	can	be	updated	by	the	storage	vendors	when	needed
to	expose	new	functionality.

The	CSI	states	its	objective	on	GitHub	as:

To	define	an	industry	standard	Container	Storage	Interface	that	will	enable
storage	vendors	(SP)	to	develop	a	plug-in	once	and	have	it	work	across	a
number	of	container	orchestration	(CO)	systems.

The	FlexVolume	interface	has	been	the	traditional	method	used	to	add	additional
features	for	a	storage	provider.	It	does	require	specific	drivers	to	be	installed	on

https://oreil.ly/AuMgE

all	of	the	nodes	of	the	cluster	that	will	use	it.	This	basically	becomes	an
executable	that	is	installed	on	the	hosts	of	the	cluster.	This	last	component	is	the
main	detractor	to	using	FlexVolumes,	especially	in	managed	service	providers,
because	access	to	the	nodes	is	frowned	upon	and	the	masters	practically
impossible.	The	CSI	plug-in	solves	this	by	basically	exposing	the	same
functionality	and	being	as	easy	to	use	as	deploying	a	pod	into	the	cluster.

Kubernetes	Storage	Best	Practices
Cloud	native	application	design	principles	try	to	enforce	stateless	application
design	as	much	as	possible;	however,	the	growing	footprint	of	container-based
services	has	created	the	need	for	data	storage	persistence.	These	best	practices
around	storage	in	Kubernetes	in	general	will	help	to	design	an	effective	approach
to	providing	the	required	storage	implementations	to	the	application	design:

If	possible,	enable	the	DefaultStorageClass	admission	plug-in	and
define	a	default	storage	class.	Many	times,	Helm	charts	for	applications
that	require	PersistentVolumes	default	to	a	default	storage	class	for	the
chart,	which	allows	the	application	to	be	installed	without	too	much
modification.

When	designing	the	architecture	of	the	cluster,	either	on-premises	or	in
a	cloud	provider,	take	into	consideration	zone	and	connectivity	between
the	compute	and	data	layers	using	the	proper	labels	for	both	nodes	and
PersistentVolumes,	and	using	affinity	to	keep	the	data	and	workload	as
close	as	possible.	The	last	thing	you	want	is	a	pod	on	a	node	in	zone	A
trying	to	mount	a	volume	that	is	attached	to	a	node	in	zone	B.

Consider	very	carefully	which	workloads	require	state	to	be	maintained
on	disk.	Can	that	be	handled	by	an	outside	service	like	a	database
system	or,	if	running	in	a	cloud	provider,	by	a	hosted	service	that	is	API
consistent	with	currently	used	APIs,	say	a	mongoDB	or	mySQL	as	a
service?

Determine	how	much	effort	would	be	involved	in	modifying	the
application	code	to	be	more	stateless.

While	Kubernetes	will	track	and	mount	the	volumes	as	workloads	are

scheduled,	it	does	not	yet	handle	redundancy	and	backup	of	the	data
that	is	stored	in	those	volumes.	The	CSI	specification	has	added	an	API
for	vendors	to	plug	in	native	snapshot	technologies	if	the	storage
backend	can	support	it.

Verify	the	proper	life	cycle	of	the	data	that	volumes	will	hold.	By
default	the	reclaim	policy	is	set	to	for	dynamically	provisioned
persistentVolumes	which	will	delete	the	volume	from	the	backing
storage	provider	when	the	pod	is	deleted.	Sensitive	data	or	data	that	can
be	used	for	forensic	analysis	should	be	set	to	reclaim.

Stateful	Applications
Contrary	to	popular	belief,	Kubernetes	has	supported	stateful	applications	since
its	infancy,	from	mySQL,	Kafka,	and	Cassandra	to	other	technologies.	Those
pioneering	days,	however,	were	fraught	with	complexities	and	were	usually	only
for	small	workloads	with	lots	of	work	required	to	get	things	like	scaling	and
durability	to	work.

To	fully	grasp	the	critical	differences,	you	must	understand	how	a	typical
ReplicaSet	schedules	and	manages	pods,	and	how	each	could	be	detrimental	to
traditional	stateful	applications:

Pods	in	a	ReplicaSet	are	scaled	out	and	assigned	random	names	when
scheduled.

Pods	in	a	ReplicaSet	are	scaled	down	in	an	arbitrary	manner.

Pods	in	a	ReplicaSet	are	never	called	directly	through	their	name	or	IP
address	but	through	their	association	with	a	Service.

Pods	in	a	ReplicaSet	can	be	restarted	and	moved	to	another	node	at	any
time.

Pods	in	a	ReplicaSet	that	have	a	PersistentVolume	mapped	are	linked
only	by	the	claim,	but	any	new	pod	with	a	new	name	can	take	over	the
claim	if	needed	when	rescheduled.

Those	that	have	only	cursory	knowledge	of	cluster	data	management	systems

can	immediately	begin	to	see	issues	with	these	characteristics	of	ReplicaSet-
based	pods.	Imagine	a	pod	that	has	the	current	writable	copy	of	the	database	just
all	of	a	sudden	getting	deleted!	Pure	pandemonium	would	ensue	for	sure.

Most	neophytes	to	the	Kubernetes	world	assume	that	StatefulSet	applications	are
automatically	database	applications	and	therefore	equate	the	two	things.	This
could	not	be	further	from	the	truth	in	the	sense	that	Kubernetes	has	no	sense	of
what	type	of	application	it	is	deploying.	It	does	not	know	that	your	database
system	requires	leader	election	processes,	that	it	can	or	cannot	handle	data
replication	between	members	of	the	set,	or,	for	that	matter,	that	it	is	a	database
system	at	all.	This	is	where	StatefulSets	come	in	to	play.

StatefulSets
What	StatefulSets	do	is	make	it	easier	to	run	applications	systems	that	expect
more	reliable	node/pod	behavior.	If	we	look	at	the	list	of	typical	pod
characteristics	in	a	ReplicaSet,	StatefulSets	offer	almost	the	complete	opposite.
The	original	spec	back	in	Kubernetes	version	1.3	called	PetSets	was	introduced
to	answer	some	of	the	critical	scheduling	and	management	needs	for	stateful-
type	applications	such	as	complex	data	management	systems:

Pods	in	a	StatefulSet	are	scaled	out	and	assigned	sequential	names.	As
the	set	scales	up,	the	pods	get	ordinal	names,	and	by	default	a	new	pod
must	be	fully	online	(pass	its	liveness	and/or	readiness	probes)	before
the	next	pod	is	added.

Pods	in	a	StatefulSet	are	scaled	down	in	reverse	sequence.

Pods	in	a	StatefulSet	can	be	addressed	individually	by	name	behind	a
headless	Service.

Pods	in	a	StatefulSet	that	require	a	volume	mount	must	use	a	defined
PersistentVolume	template.	Volumes	claimed	by	pods	in	a	StatefulSet
are	not	deleted	when	the	StatefulSet	is	deleted.

A	StatefulSet	specification	looks	very	similar	to	a	Deployment	except	for	the
Service	declaration	and	the	PersistentVolume	template.	The	headless	Service
should	be	created	first,	which	defines	the	Service	that	the	pods	will	be	addressed
with	individually.	The	headless	Service	is	the	same	as	a	regular	Service	but	does

not	do	the	normal	load	balancing:

apiVersion: v1
kind: Service
metadata:
 name: mongo
 labels:
 name: mongo
spec:
 ports:
 - port: 27017
 targetPort: 27017
 clusterIP: None #This creates the headless Service
 selector:
 role: mongo

The	StatefulSet	definition	will	also	look	exactly	like	a	Deployment	with	a	few
changes:

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: mongo
spec:
 serviceName: "mongo"
 replicas: 3
 template:
 metadata:
 labels:
 role: mongo
 environment: test
 spec:
 terminationGracePeriodSeconds: 10
 containers:
 - name: mongo
 image: mongo:3.4
 command:
 - mongod
 - "--replSet"
 - rs0
 - "--bind_ip"
 - 0.0.0.0
 - "--smallfiles"
 - "--noprealloc"
 ports:
 - containerPort: 27017
 volumeMounts:

 - name: mongo-persistent-storage
 mountPath: /data/db
 - name: mongo-sidecar
 image: cvallance/mongo-k8s-sidecar
 env:
 - name: MONGO_SIDECAR_POD_LABELS
 value: "role=mongo,environment=test"
 volumeClaimTemplates:
 - metadata:
 name: mongo-persistent-storage
 annotations:
 volume.beta.kubernetes.io/storage-class: "fast"
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 2Gi

Operators
StatefulSets	has	definitely	been	a	major	factor	in	introducing	complex	stateful
data	systems	as	feasible	workloads	in	Kubernetes.	The	only	real	issue	is,	as
stated	earlier,	Kubernetes	does	not	really	understand	the	workload	that	is	running
in	the	StatefulSet.	All	of	the	other	complex	operations,	like	backups,	failover,
leader	registration,	new	replica	registration,	and	upgrades,	are	all	operations	that
need	to	happen	quite	regularly	and	will	require	some	careful	consideration	when
running	as	StatefulSets.

Early	on	in	the	growth	of	Kubernetes,	CoreOS	site	reliability	engineers	(SREs)
created	a	new	class	of	cloud	native	software	for	Kubernetes	called	Operators.
The	original	intent	was	to	encapsulate	the	application	domain-specific
knowledge	of	running	a	specific	application	into	a	specific	controller	that
extends	Kubernetes.	Imagine	building	up	on	the	StatefulSet	controller	to	be	able
to	deploy,	scale,	upgrade,	backup,	and	run	general	maintenance	operations	on
Cassandra	or	Kafka.	Some	of	the	first	Operators	that	were	created	were	for	etcd
and	Prometheus,	which	uses	a	time	series	database	to	keep	metrics	over	time.
The	proper	creation,	backup,	and	restore	configuration	of	Prometheus	or	etcd
instances	can	be	handled	by	an	Operator	and	are	basically	new	Kubernetes-
managed	objects	just	like	a	pod	or	Deployment.

Until	recently,	Operators	have	been	one-off	tools	created	by	SREs	or	by	software
vendors	for	their	specific	application.	In	mid-2018,	RedHat	created	the	Operator

Framework,	which	is	a	set	of	tools	including	an	SDK	life	cycle	manager	and
future	modules	that	will	enable	features	such	as	metering,	marketplace,	and
registry	type	functions.	Operators	are	not	only	for	stateful	applications,	but
because	of	their	custom	controller	logic	they	are	definitely	more	amenable	to
complex	data	services	and	stateful	systems.

Operators	are	still	an	emerging	technology	in	the	Kubernetes	space,	but	they	are
slowly	taking	a	foothold	with	many	data	management	system	vendors,	cloud
providers,	and	SREs	the	world	over	who	want	to	include	some	of	the	operational
knowledge	they	have	in	running	complex	distributed	systems	in	Kubernetes.
Take	a	look	at	OperatorHub	for	an	updated	list	of	curated	Operators.

StatefulSet	and	Operator	Best	Practices
Large	distributed	applications	that	require	state	and	possibly	complicated
management	and	configuration	operations	benefit	from	Kubernetes	StatefulSets
and	Operators.	Operators	are	still	evolving,	but	they	have	the	backing	of	the
community	at	large,	so	these	best	practices	are	based	on	current	capabilities	at
the	time	of	publication:

The	decision	to	use	Statefulsets	should	be	taken	judiciously	because
usually	stateful	applications	require	much	deeper	management	that	the
orchestrator	cannot	really	manage	well	yet	(read	the	“Operators”	section
for	the	possible	future	answer	to	this	deficiency	in	Kubernetes).

The	headless	Service	for	the	StatefulSet	is	not	automatically	created	and
must	be	created	at	deployment	time	to	properly	address	the	pods	as
individual	nodes.

When	an	application	requires	ordinal	naming	and	dependable	scaling,	it
does	not	always	mean	it	requires	the	assignment	of	PersistentVolumes.

If	a	node	in	the	cluster	becomes	unresponsive,	any	pods	that	are	part	of
a	StatefulSet	are	not	not	automatically	deleted;	they	instead	will	enter	a
Terminating	or	Unkown	state	after	a	grace	period.	The	only	way	to
clear	this	pod	is	to	remove	the	node	object	from	the	cluster,	the	kubelet
beginning	to	work	again	and	deleting	the	pod	directly,	or	an	Operator
force	deleting	the	pod.	The	force	delete	should	be	the	last	option	and

http://operatorhub.io

great	care	should	be	taken	that	the	node	that	had	the	deleted	pod	does
not	come	back	online,	because	there	will	now	be	two	pods	with	the
same	name	in	the	cluster.	You	can	use	kubectl delete pod nginx-0
--grace-period=0 --force	to	force	delete	the	pod.

Even	after	force	deleting	a	pod,	it	might	stay	in	an	Unknown	state,	so	a
patch	to	the	API	server	will	delete	the	entry	and	cause	the	StatefulSet
controller	to	create	a	new	instance	of	the	deleted	pod:	kubectl patch
pod nginx-0 -p '{"metadata":{"finalizers":null}}'.

If	you’re	running	a	complex	data	system	with	some	type	of	leader
election	or	data	replication	confirmation	processes,	use	preStop hook
to	properly	close	any	connections,	force	leader	election,	or	verify	data
synchronization	before	the	pod	is	deleted	using	a	graceful	shutdown
process.

When	the	application	that	requires	stateful	data	is	a	complex	data
management	system,	it	might	be	worth	a	look	to	determine	whether	an
Operator	exists	to	help	manage	the	more	complicated	life	cycle
components	of	the	application.	If	the	application	is	built	in-house,	it
might	be	worth	investigating	whether	it	would	be	useful	to	package	the
application	as	an	Operator	to	add	additional	manageability	to	the
application.	Look	at	the	CoreOS	Operator	SDK	for	an	example.

Summary
Most	organizations	look	to	containerize	their	stateless	applications	and	leave	the
stateful	applications	as	is.	As	more	and	more	cloud	native	applications	run	in
cloud	provider	Kubernetes	offerings,	data	gravity	becomes	an	issue.	Stateful
applications	require	much	more	due	diligence,	but	the	reality	of	running	them	in
clusters	has	been	accelerated	by	the	introduction	of	StatefulSets	and	Operators.
Mapping	volumes	into	containers	allow	Operators	to	abstract	the	storage
subsystem	specifics	away	from	any	application	development.	Managing	stateful
applications	such	as	database	systems	in	Kubernetes	is	still	a	complex
distributed	system	and	needs	to	be	carefully	orchestrated	using	the	native
Kubernetes	primitives	of	pods,	ReplicaSets,	Deployments,	and	StatefulSets,	but

https://coreos.com/operators

using	Operators	that	have	specific	application	knowledge	built	into	them	as
Kubernetes-native	APIs	may	help	to	elevate	these	systems	into	production-based
clusters.

Chapter	17.	Admission	Control
and	Authorization

Controlling	access	to	the	Kubernetes	API	is	key	to	ensuring	that	your	cluster	is
not	only	secured	but	also	can	be	used	as	a	means	to	impart	policy	and
governance	for	all	users,	workloads,	and	components	of	your	Kubernetes	cluster.
In	this	chapter,	we	share	how	you	can	use	admission	controllers	and
authorization	modules	to	enable	specific	features	and	how	you	can	customize
them	to	suit	your	specific	needs.

Figure	17-1	provides	insight	on	how	and	where	admission	control	and
authorization	take	place.	It	depicts	the	end-to-end	request	flow	through	the
Kubernetes	API	server	until	the	object,	if	accepted,	is	saved	to	storage.

Figure	17-1.	An	API	request	flow

Admission	Control
Have	you	ever	wondered	how	namespaces	are	automatically	created	when	you
define	a	resource	in	a	namespace	that	doesn’t	already	exist?	Maybe	you’ve
wondered	how	a	default	storage	class	is	selected?	These	changes	are	powered	by
a	little-known	feature	called	admission	controllers.	In	this	section,	we	take	a
look	at	how	you	can	use	admission	controllers	to	implement	Kubernetes	best
practices	on	the	server	side	on	behalf	of	the	user	and	how	we	can	utilize

admission	control	to	govern	how	a	Kubernetes	cluster	is	used.

What	Are	They?
Admission	controllers	sit	in	the	path	of	the	Kubernetes	API	server	request	flow
and	receive	requests	following	the	authentication	and	authorization	phases.	They
are	used	to	either	validate	or	mutate	(or	both)	the	request	object	before	saving	it
to	storage.	The	difference	between	validating	and	mutating	admission	controllers
is	that	mutating	can	modify	the	request	object	they	admit,	whereas	validating
cannot.

Why	Are	They	Important?
Given	that	admission	controllers	sit	in	the	path	of	all	API	server	requests,	you
can	use	them	in	a	variety	of	different	ways.	Most	commonly,	admission
controller	usage	can	be	grouped	into	the	following	three	groups:

Policy	and	governance

Admission	controllers	allow	policy	to	be	enforced	in	order	to	meet	business
requirements;	for	example:

Only	internal	cloud	load	balancers	can	be	used	when	in	the	dev
namespace.

All	containers	in	a	pod	must	have	resource	limits.

Add	predefined	standard	labels	or	annotations	to	all	resources	in	order
to	make	them	discoverable	to	existing	tools.

All	Ingress	resources	only	use	HTTPS.	For	more	details	on	how	to	use
admission	webhooks	in	this	context,	see	Chapter	11.

Security

You	can	use	admission	controllers	to	enforce	a	consistent	security	posture
across	your	cluster.	A	canonical	example	is	the	PodSecurityPolicy	admission
controller,	which	enables	controls	on	security-sensitive	fields	of	the	pod
specification,	for	example,	denying	privileged	containers	or	usage	of	specific
paths	from	the	host	filesystem.	You	can	enforce	more	granular	or	custom

security	rules	using	admission	webhooks.

Resource	management

Admission	controllers	allow	you	to	validate	in	order	to	provide	best	practices
for	your	cluster	users,	for	example:

Ensure	all	ingress	fully	qualified	domain	names	(FQDN)	fall	within	a
specific	suffix.

Ensure	ingress	FQDNs	don’t	overlap.

All	containers	in	a	pod	must	have	resource	limits.

Admission	Controller	Types
There	are	two	classes	of	admission	controllers:	standard	and	dynamic.	Standard
admission	controllers	are	compiled	into	the	API	server	and	are	shipped	as	plug-
ins	with	each	Kubernetes	release;	they	need	to	be	configured	when	the	API
server	is	started.	Dynamic	controllers,	on	the	other	hand,	are	configurable	at
runtime	and	are	developed	outside	the	core	Kubernetes	codebase.	The	only	type
of	dynamic	admission	control	is	admission	webhooks,	which	receive	admission
requests	via	HTTP	callbacks.

Kubernetes	ships	with	more	than	30	admission	controllers,	which	are	enabled	via
the	following	flag	on	the	Kubernetes	API	server:

--enable-admission-plugins

Many	of	the	features	that	ship	with	Kubernetes	depend	on	the	enablement	of
specific	standard	admission	controllers	and,	as	such,	there	is	a	recommended	set
of	defaults:

--enable-admission-
plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTol
erationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,Priority,Resource
Quota,PodSecurityPolicy

You	can	find	the	list	of	Kubernetes	admission	controllers	and	their	functionality
in	the	Kubernetes	documentation.

You	might	have	noticed	the	following	from	the	list	of	recommended	admission
controllers	to	enable:
“MutatingAdmissionWebhook,ValidatingAdmissionWebhook.”	These	standard
admission	controllers	don’t	implement	any	admission	logic	themselves;	rather,
they	are	used	to	configure	a	webhook	endpoint	running	in-cluster	to	forward	the
admission	request	object.

Configuring	Admission	Webhooks
As	previously	mentioned,	one	of	the	main	advantages	of	admission	webhooks	is
that	they	are	dynamically	configurable.	It	is	important	that	you	understand	how
to	effectively	configure	admission	webhooks	because	there	are	implications	and
trade-offs	when	it	comes	to	consistency	and	failure	modes.

The	snippet	that	follows	is	a	ValidatingWebhookConfiguration	resource
manifest.	This	manifest	is	used	to	define	a	validating	admission	webhook.	The
snippet	provides	detailed	descriptions	on	the	function	of	each	field:

apiVersion: admissionregistration.k8s.io/v1beta1
 kind: ValidatingWebhookConfiguration
 metadata:
 name: ## Resource name
 webhooks:
 - name: ## Admission webhook name, which will be shown to the user when any
admission reviews are denied
 clientConfig:
 service:
 namespace: ## The namespace where the admission webhook pod resides
 name: ## The service name that is used to connect to the admission
 webhook
 path: ## The webhook URL
 caBundle: ## The PEM encoded CA bundle which will be used to validate the
webhook's server certificate
 rules: ## Describes what operations on what resources/subresources the API
server must send to this webhook
 - operations:
 - ## The specific operation that triggers the API server to send to this
webhook (e.g., create, update, delete, connect)
 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - ## Specific resources by name (e.g., deployments, services, ingresses)

 failurePolicy: ## Defines how to handle access issues or unrecognized errors,
and must be Ignore or Fail

For	completeness,	let’s	take	a	look	at	a	MutatingWebhookConfiguration	resource
manifest.	This	manifest	defines	a	mutating	admission	webhook.	The	snippet
provides	detailed	descriptions	on	the	function	of	each	field:

apiVersion: admissionregistration.k8s.io/v1beta1
 kind: MutatingWebhookConfiguration
 metadata:
 name: ## Resource name
 webhooks:
 - name: ## Admission webhook name, which will be shown to the user when any
admission reviews are denied
 clientConfig:
 service:
 namespace: ## The namespace where the admission webhook pod resides
 name: ## The service name that is used to connect to the admission webhook
 path: ## The webhook URL
 caBundle: ## The PEM encoded CA bundle which will be used to validate the
webhook's server certificate
 rules: ## Describes what operations on what resources/subresources the API
server must send to this webhook
 - operations:
 - ## The specific operation that triggers the API server to send to this
webhook (e.g., create, update, delete, connect)
 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - ## Specific resources by name (e.g., deployments, services, ingresses)
 failurePolicy: ## Defines how to handle access issues or unrecognized errors,
and must be Ignore or Fail

You	might	have	noticed	that	both	resources	are	identical,	with	the	exception	of
the	kind	field.	There	is	one	difference	on	the	backend,	however:
MutatingWebhookConfiguration	allows	the	admission	webhook	to	return	a
modified	request	object,	whereas	ValidatingWebhookConfiguration	does	not.
Even	still,	it	is	acceptable	to	define	a	MutatingWebhookConfiguration	and
simply	validate;	there	are	security	considerations	that	come	into	play,	and	you
should	consider	following	the	least-privilege	rule.

NOTE
It	is	also	likely	that	you	thought	to	yourself,	“What	happens	if	I	define	a
ValidatingWebhookConfiguration	or	MutatingWebhookConfiguration	with	the	resource	field
under	the	rule	object	to	be	either	ValidatingWebhookConfiguration	or
MutatingWebhookConfiguration?”	The	good	news	is	that	ValidatingAdmissionWebhooks	and
MutatingAdmissionWebhooks	are	never	called	on	admission	requests	for
ValidatingWebhookConfiguration	and	MutatingWebhookConfiguration	objects.	This	is	for
good	reason:	you	don’t	want	to	accidentally	put	the	cluster	in	an	unrecoverable	state.

Admission	Control	Best	Practices
Now	that	we’ve	covered	the	power	of	admission	controllers,	here	are	our	best
practices	to	help	you	make	the	most	of	using	them:

Admission	plug-in	ordering	doesn’t	matter.	In	earlier	versions	of
Kubernetes,	the	ordering	of	the	admission	plug-ins	was	specific	to	the
processing	order;	hence	it	mattered.	In	current	supported	Kubernetes
versions,	the	ordering	of	the	admission	plug-ins	as	specified	as	API
server	flags	via	--enable-admission-plugins	no	longer	matters.
Ordering	does,	however,	play	a	small	role	when	it	comes	to	admission
webhooks,	so	it’s	important	to	understand	the	request	flow	in	this	case.
Request	admittance	or	rejection	operates	as	a	logical	AND,	meaning	if
any	of	the	admission	webhooks	reject	a	request,	the	entire	request	is
rejected	and	an	error	is	sent	back	to	the	user.	It’s	also	important	to	note
that	mutating	admission	controllers	are	always	run	prior	to	running
validating	admission	controllers.	If	you	think	about	it,	this	makes	good
sense:	you	probably	don’t	want	to	validate	objects	that	you	are	going	to
subsequently	modify.	Figure	17-2	illustrates	a	request	flow	via
admission	webhooks.

Figure	17-2.	An	API	request	flow	via	admission	webhooks

Don’t	mutate	the	same	fields.	Configuring	multiple	mutating	admission
webhooks	also	presents	challenges.	There	is	no	way	to	order	the	request
flow	through	multiple	mutating	admission	webhooks,	so	it’s	important
to	not	have	mutating	admission	controllers	modify	the	same	fields,
because	this	can	result	in	unexpected	results.	In	the	case	where	you
have	multiple	mutating	admission	webhooks,	we	generally	recommend
configuring	validating	admission	webhooks	to	confirm	that	the	final
resource	manifest	is	what	you	expect	post-mutation	because	it’s
guaranteed	to	be	run	following	mutating	webhooks.

Fail	open/fail	closed.	You	might	recall	seeing	the	failurePolicy	field
as	part	of	both	the	mutating	and	validating	webhook	configuration
resources.	This	field	defines	how	the	API	server	should	proceed	in	the
case	where	the	admission	webhooks	have	access	issues	or	encounter
unrecognized	errors.	You	can	set	this	field	to	either	Ignore	or	Fail.
Ignore	essentially	fails	to	open,	meaning	that	processing	of	the	request
will	continue,	whereas	Fail	denies	the	entire	request.	This	might	seem
obvious,	but	the	implications	in	both	cases	require	consideration.
Ignoring	a	critical	admission	webhook	could	result	in	policy	that	the
business	relies	on	not	being	applied	to	a	resource	without	the	user
knowing.

One	potential	solution	to	protect	against	this	would	be	to	raise	an	alert
when	the	API	server	logs	that	it	cannot	reach	a	given	admission
webhook.	Fail	can	be	even	more	devastating	by	denying	all	requests	if
the	admission	webhook	is	experiencing	issues.	To	protect	against	this

you	can	scope	the	rules	to	ensure	that	only	specific	resource	requests	are
set	to	the	admission	webhook.	As	a	tenet,	you	should	never	have	any
rules	that	apply	to	all	resources	in	the	cluster.

If	you	have	written	your	own	admission	webhook,	it’s	important	to
remember	that	user/system	requests	can	be	directly	affected	by	the	time
it	takes	for	your	admission	webhook	to	make	a	decision	and	respond.
All	admission	webhook	calls	are	configured	with	a	30-second	timeout,
after	which	time	the	failurePolicy	takes	effect.	Even	if	it	takes
several	seconds	for	your	admission	webhook	to	make	an	admit/deny
decision,	it	can	severely	affect	user	experience	when	working	with	the
cluster.	Avoid	having	complex	logic	or	relying	on	external	systems	such
as	databases	in	order	to	process	the	admit/deny	logic.

Scoping	admission	webhooks.	There	is	an	optional	field	that	allows	you
to	scope	the	namespaces	in	which	the	admission	webhooks	operate	on
via	the	NamespaceSelector	field.	This	field	defaults	to	empty,	which
matches	everything,	but	can	be	used	to	match	namespace	labels	via	the
use	of	the	matchLabels	field.	We	recommend	that	you	always	use	this
field	because	it	allows	for	an	explicit	opt-in	per	namespace.

The	kube-system	namespace	is	a	reserved	namespace	that’s	common
across	all	Kubernetes	clusters.	It’s	where	all	system-level	services
operate.	We	recommend	never	running	admission	webhooks	against	the
resources	in	this	namespace	specifically,	and	you	can	achieve	this	by
using	the	NamespaceSelector	field	and	simply	not	matching	the	kube-
system	namespace.	You	should	also	consider	it	on	any	system-level
namespaces	that	are	required	for	cluster	operation.

Lock	down	admission	webhook	configurations	with	RBAC.	Now	that
you	know	about	all	the	fields	in	the	admission	webhook	configuration,
you	have	probably	thought	of	a	really	simple	way	to	break	access	to	a
cluster.	It	goes	without	saying	that	the	creation	of	both	a
MutatingWebhookConfiguration	and	ValidatingWebhookConfiguration
is	a	root-level	operation	on	the	cluster	and	must	be	locked	down
appropriately	using	RBAC.	Failure	to	do	so	can	result	in	a	broken
cluster	or,	even	worse,	an	injection	attack	on	your	application

workloads.

Don’t	send	sensitive	data.	Admission	webhooks	are	essentially	black
boxes	that	accept	AdmissionRequests	and	output	AdmissionResponses.
How	they	store	and	manipulate	the	request	is	opaque	to	the	user.	It’s
important	to	think	about	what	request	payloads	you	are	sending	to	the
admission	webhook.	In	the	case	of	Kubernetes	secrets	or	ConfigMaps,
they	might	contain	sensitive	information	and	require	strong	guarantees
about	how	that	information	is	stored	and	shared.	Sharing	these
resources	with	an	admission	webhook	can	leak	sensitive	information,
which	is	why	you	should	scope	your	resource	rules	to	the	minimum
resource	needed	to	validate	and/or	mutate.

Authorization
We	often	think	about	authorization	in	the	context	of	answering	the	following
question:	“Is	this	user	able	to	perform	these	actions	on	these	resources?”	In
Kubernetes,	the	authorization	of	each	request	is	performed	after	authentication
but	before	admission.	In	this	section,	we	explore	how	you	can	configure
different	authorization	modules	and	better	understand	how	you	can	create	the
appropriate	policy	to	serve	the	needs	of	your	cluster.	Figure	17-3	illustrates
where	authorization	sits	in	the	request	flow.

Figure	17-3.	API	request	flow	via	authorization	modules

Authorization	Modules

Authorization	modules	are	responsible	for	either	granting	or	denying	permission
to	access.	They	determine	whether	to	grant	access	based	on	policy	that	must	be
explicitly	defined;	otherwise	all	requests	will	be	implicitly	denied.

As	of	version	1.15,	Kubernetes	ships	with	the	following	authorization	modules
out	of	the	box:

Attribute-Based	Access	Control	(ABAC)

Allows	authorization	policy	to	be	configured	via	local	files

RBAC

Allows	authorization	policy	to	be	configured	via	the	Kubernetes	API	(refer
to	Chapter	4)

Webhook

Allows	the	authorization	of	a	request	to	be	handled	via	a	remote	REST
endpoint

Node

Specialized	authorization	module	that	authorizes	requests	from	kubelets

The	modules	are	configured	by	the	cluster	administrator	via	the	following	flag
on	the	API	server:	--authorization-mode.	Multiple	modules	can	be
configured	and	are	checked	in	order.	Unlike	admission	controllers,	if	a	single
authorization	module	admits	the	request,	the	request	can	proceed.	Only	for	the
case	in	which	all	modules	deny	the	request	will	an	error	be	returned	to	the	user.

ABAC
Let’s	take	a	look	at	a	policy	definition	in	the	context	of	using	the	ABAC
authorization	module.	The	following	grants	user	Mary	read-only	access	to	a	pod
in	the	kube-system	namespace:

apiVersion: abac.authorization.kubernetes.io/v1beta1
kind: Policy
spec:
 user: mary
 resource: pods
 readonly: true
 namespace: kube-system

If	Mary	were	to	make	the	following	request,	it	would	be	denied	because	Mary
doesn’t	have	access	to	get	pods	in	the	demo-app	namespace:

apiVersion: authorization.k8s.io/v1beta1
kind: SubjectAccessReview
spec:
 resourceAttributes:
 verb: get
 resource: pods
 namespace: demo-app

This	example	introduced	a	new	API	group,	authorization.k8s.io.	This	set	of
APIs	exposes	API	server	authorization	to	external	services	and	has	the	following
APIs,	which	are	great	for	debugging:

SelfSubjectAccessReview

Access	review	for	the	current	user

SubjectAccessReview

Like	SelfSubjectAccessReview	but	for	any	user

LocalSubjectAccessReview

Like	SubjectAccessReview	but	namespace	specific

SelfSubjectRulesReview

Returns	a	list	of	actions	a	user	can	perform	in	a	given	namespace

The	really	cool	part	is	that	you	can	query	these	APIs	by	creating	resources	as
you	typically	would.	Let’s	actually	take	the	previous	example	and	test	this	for
ourselves	using	the	SelfSubjectAccessReview.	The	status	field	in	the	output
indicates	that	this	request	is	allowed:

$ cat << EOF | kubectl create -f - -o yaml
apiVersion: authorization.k8s.io/v1beta1
kind: SelfSubjectAccessReview
spec:
 resourceAttributes:
 verb: get
 resource: pods
 namespace: demo-app
EOF

apiVersion: authorization.k8s.io/v1beta1
kind: SelfSubjectAccessReview
metadata:
 creationTimestamp: null
spec:
 resourceAttributes:
 namespace: demo-app
 resource: pods
 verb: get
status:
 allowed: true

In	fact,	Kubernetes	ships	with	tooling	built	into	kubectl	to	make	this	even
easier.	The	kubectl auth can-i	command	operates	by	querying	the	same	API
as	the	previous	example:

$ kubectl auth can-i get pods --namespace demo-app
yes

With	administrator	credentials,	you	can	also	run	the	same	command	to	check
actions	as	another	user:

$ kubectl auth can-i get pods --namespace demo-app --as mary
yes

RBAC
Kubernetes	role-based	access	control	is	covered	in	depth	in	Chapter	4.

Webhook
Using	the	webhook	authorization	module	allows	a	cluster	administrator	to
configure	an	external	REST	endpoint	to	delegate	the	authorization	process	to.
This	would	run	off	cluster	and	be	reachable	via	URL.	The	configuration	of	the
REST	endpoint	is	found	in	a	file	on	the	master	filesystem	and	configured	on	the
API	server	via	--authorization-webhook-config-file=SOME_FILENAME.
After	you’ve	configured	it,	the	API	server	will	send	SubjectAccessReview
objects	as	part	of	the	request	body	to	the	authorization	webhook	application,
which	processes	and	returns	the	object	with	the	status	field	complete.

Authorization	Best	Practices

Consider	the	following	best	practices	before	making	changes	to	the	authorization
modules	configured	on	your	cluster:

Given	that	the	ABAC	policies	need	to	be	placed	on	the	filesystem	of
each	master	node	and	kept	synchronized,	we	generally	recommend
against	using	ABAC	in	multimaster	clusters.	The	same	can	be	said	for
the	webhook	module	because	the	configuration	is	based	on	a	file	and	a
corresponding	flag	being	present.	Furthermore,	changes	to	these
policies	in	the	files	require	a	restart	of	the	API	server	to	take	effect,
which	is	effectively	a	control-plane	outage	in	a	single	master	cluster	or
inconsistent	configuration	in	a	multimaster	cluster.	Given	these	details,
we	recommend	using	only	the	RBAC	module	for	user	authorization
because	the	rules	are	configured	and	stored	in	Kubernetes	itself.

Webhook	modules,	although	powerful,	are	potentially	very	dangerous.
Given	that	every	request	is	subject	to	the	authorization	process,	a	failure
of	a	webhook	service	would	be	devastating	for	a	cluster.	Therefore,	we
generally	recommend	not	using	external	authorization	modules	unless
you	completely	vet	and	are	comfortable	with	your	cluster	failure	modes
if	the	webhook	service	becomes	unreachable	or	unavailable.

Summary
In	this	chapter,	we	covered	the	foundational	topics	of	admission	and
authorization	and	covered	best	practices.	Put	these	skills	to	use	by	determining
the	best	admission	and	authorization	configuration	that	allows	you	to	customize
the	controls	and	policies	needed	for	the	life	of	your	cluster.

Chapter	18.	Conclusion

The	primary	strength	of	Kubernetes	is	its	modularity	and	generality.	Nearly
every	kind	of	application	that	you	might	want	to	deploy	you	can	fit	within
Kubernetes,	and	no	matter	what	kind	of	adjustments	or	tuning	you	need	to	make
to	your	system,	they’re	generally	possible.

Of	course,	this	modularity	and	generality	come	at	a	cost,	and	that	cost	is	a
reasonable	amount	of	complexity.	Understanding	how	the	APIs	and	components
of	Kubernetes	work	is	critical	to	successfully	unlocking	the	power	of	Kubernetes
to	make	your	application	development,	management,	and	deployment	easier	and
more	reliable.

Likewise,	understanding	how	to	link	Kubernetes	up	with	a	wide	variety	of
external	systems	and	practices	as	varied	as	an	on-premises	database	and	a
Continuous	Delivery	system	is	critical	to	efficiently	making	use	of	Kubernetes	in
the	real	world.

Throughout	this	book	we	have	worked	to	provide	concrete	real-world	experience
on	specific	topics	that	you	will	likely	encounter	whether	you	are	a	newcomer	to
Kubernetes	or	an	experienced	administrator.	Regardless	of	whether	you	are
facing	a	new	area	in	which	you	need	to	become	an	expert,	or	you	simply	want	a
refresher	about	how	others	have	addressed	a	familiar	problem,	hopefully,	the
chapters	in	this	book	have	enabled	you	to	learn	from	our	experience.	We	also
hope	that	in	this	learning,	you	gain	the	skills	and	confidence	to	use	Kubernetes
to	its	fullest	capabilities.	Thank	you	and	we	look	forward	to	seeing	you	out	in	the
real	world!

Index

A

A/B	testing	(see	canary	deployments)

ABAC	(Attribute-Based	Access	Control),	ABAC,	Authorization	Best	Practices

access	control

NetworkPolicy	API	and,	Network	Security	Policy

role-based	(see	RBAC)

secrets	and,	Managing	Authentication	with	Secrets

admission	controllers,	Admission	Controllers,	Admission	Control	and
Authorization-Admission	Control	Best	Practices

best	practices,	Admission	Control	Best	Practices-Admission	Control	Best
Practices

ConfigMap/Secrets	and,	Common	Best	Practices	for	the	ConfigMap	and
Secrets	APIs

defined,	What	Are	They?

importance	of,	Why	Are	They	Important?

sidecars	and,	Extending	Kubernetes	Clusters

types,	Admission	Controller	Types

webhook	configuration,	Configuring	Admission	Webhooks-Configuring
Admission	Webhooks

affinity/anti-affinity,	Pod	Affinity	and	Anti-Affinity

alert	fatigue,	Alerting

alert	thresholds,	Alerting

alerting

best	practices,	Alerting

overview,	Alerting

Amazon	EC2,	Monitoring	Tools

Amazon	Web	Services	(AWS),	Exporting	Services	by	Using	Internal	Load
Balancers

anomaly	detection,	Intrusion	and	Anomaly	Detection	Tooling

application	configuration,	Configuring	an	Application	with	ConfigMaps

application	platforms

approaches	to	developing	higher-level	abstractions,	Approaches	to
Developing	Higher-Level	Abstractions

best	practices	for	building,	Building	Application	Platforms	Best	Practices

building	on	top	of	Kubernetes,	Building	Higher-Level	Application	Patterns
on	Top	of	Kubernetes-Summary

design	considerations,	Design	Considerations	When	Building	Platforms-
Support	Existing	Mechanisms	for	Service	and	Service	Discovery

design	considerations	when	building	platforms,	Design	Considerations
When	Building	Platforms-Support	Existing	Mechanisms	for	Service	and
Service	Discovery

extending	Kubernetes,	Extending	Kubernetes-Extending	the	Kubernetes
User	Experience

extending	Kubernetes	clusters,	Extending	Kubernetes	Clusters-Extending
Kubernetes	Clusters

extending	Kubernetes	UX,	Extending	the	Kubernetes	User	Experience

support	for	existing	mechanisms	for	service/service	discovery,	Support

Existing	Mechanisms	for	Service	and	Service	Discovery

support	for	exporting	to	a	container	image,	Support	Exporting	to	a
Container	Image

application	scaling,	Application	Scaling

Application	Service,	Managing	Configuration	Files

Attribute-Based	Access	Control	(ABAC),	ABAC,	Authorization	Best	Practices

authentication,	Secrets	and,	Managing	Authentication	with	Secrets-Managing
Authentication	with	Secrets

authorization,	Authorization-Authorization	Best	Practices

ABAC	module,	ABAC

best	practices,	Authorization	Best	Practices

modules,	Authorization	Modules-Webhook

webhook	module,	Webhook

autoscaling,	for	machine	learning,	Machine	Leaning	on	Kubernetes	Best
Practices

AWS	(Amazon	Web	Services),	Exporting	Services	by	Using	Internal	Load
Balancers

AWS	Container	Insights,	Monitoring	Tools

Azure,	Exporting	Services	by	Using	Internal	Load	Balancers

Azure	Container	Instances,	Monitoring	Tools

Azure	CosmosDB,	Multicluster	Design	Concerns

Azure	Kubernetes	Service,	Monitoring	Tools

Azure	Monitor,	Monitoring	Tools

B

Berkeley	Packet	Filter	(BPF),	Intrusion	and	Anomaly	Detection	Tooling

best	effort	QoS,	Resource	Limits	and	Pod	Quality	of	Service

black-box	monitoring,	Monitoring	Techniques

blast	radius,	Testing	in	Production,	Why	Multiple	Clusters?

blue/green	deployments,	Deployment	Strategies

BPF	(Berkeley	Packet	Filter),	Intrusion	and	Anomaly	Detection	Tooling

bricking,	Building	a	Development	Cluster

burstable	QoS,	Resource	Limits	and	Pod	Quality	of	Service

C

cAdvisor,	cAdvisor

canary	deployments,	Deployment	Strategies

canary	region,	Canary	Region

Canonical	Name	(see	CNAME-based	Kubernetes	Services)

CD	(see	continuous	delivery;	continuous	deployment;	CI/CD	pipeline)

certificate-based	authentication,	Onboarding	Users

chaos	engineering,	Testing	in	Production

chaos	experiment,	A	Simple	Chaos	Experiment

Chaos	Toolkit,	A	Simple	Chaos	Experiment

chart	(Helm	file	collection),	Parameterizing	Your	Application	by	Using	Helm

checkpoints,	Checkpoints	and	saving	models

CI	(see	continuous	integration)

CI/CD	pipeline,	Continuous	Integration,	Testing,	and	Deployment-Summary

best	practices	for,	Best	Practices	for	CI/CD

chaos	experiment,	A	Simple	Chaos	Experiment

container	builds,	Container	Builds

container	image	tagging,	Container	Image	Tagging

continuous	deployment	(CD),	Continuous	Deployment-Deployment
Strategies

deployment	strategies,	Deployment	Strategies-Deployment	Strategies

rolling	upgrade,	Performing	a	Rolling	Upgrade

setting	up	CD,	Setting	Up	CD

setting	up	CI,	Setting	Up	CI-Setting	Up	CI

testing,	Testing

testing	in	production,	Testing	in	Production-Testing	in	Production

version	control,	Version	Control

Classless	Inter-Domain	Routing	(CIDR),	Kubenet

Cloud	Spanner,	Multicluster	Design	Concerns

CloudWatch	Container	Insights,	Monitoring	Tools

Cluster	API,	Managing	Multiple	Cluster	Deployments

Cluster	Autoscaler	add-on,	Cluster	autoscaling

cluster	scaling,	Cluster	Scaling

autoscaling,	Cluster	autoscaling

manual,	Manual	scaling

cluster-level	services,	Cluster-Level	Services

ClusterIP	service	type,	Service	Type	ClusterIP

clusters

extending,	Extending	Kubernetes	Clusters-Extending	Kubernetes	Clusters

mixed	workload,	for	machine	learning,	Machine	Leaning	on	Kubernetes
Best	Practices

multiple	(see	multiple	clusters)

shared	vs.	one	per	developer,	Building	a	Development	Cluster

CNAME-based	Kubernetes	Services,	CNAME-Based	Services	for	Stable	DNS
Names

CNI	plug-in

about,	The	CNI	Plug-in

best	practices,	CNI	Best	Practices

compliance,	multicluster	design	and,	Why	Multiple	Clusters?

config	resource,	Data	Replication

ConfigMaps

best	practices,	Common	Best	Practices	for	the	ConfigMap	and	Secrets
APIs-Common	Best	Practices	for	the	ConfigMap	and	Secrets	APIs

common	best	practices	for	ConfigMap	and	Secrets	APIs,	Common	Best
Practices	for	the	ConfigMap	and	Secrets	APIs-Common	Best	Practices	for
the	ConfigMap	and	Secrets	APIs

configuration	with,	ConfigMaps

configuring	an	application	with,	Configuring	an	Application	with
ConfigMaps

DNS	server	and,	CNAME-Based	Services	for	Stable	DNS	Names

configuration

common	best	practices	for	ConfigMap	and	Secrets	APIs,	Common	Best
Practices	for	the	ConfigMap	and	Secrets	APIs-Common	Best	Practices	for
the	ConfigMap	and	Secrets	APIs

Secrets	for,	Secrets

with	ConfigMaps,	Configuring	an	Application	with	ConfigMaps,
ConfigMaps

configuration	drift,	Continuous	Deployment

constraint	resource,	Defining	Constraints

constraint	templates

defining,	Introducing	Gatekeeper,	Defining	Constraint	Templates

elements	of,	Constraint	template

constraints

best	practices,	Policy	and	Governance	Best	Practices

defining,	Defining	Constraints

Gatekeeper	and,	Constraint

operational	characteristics,	Defining	Constraints

Consul,	Service	Meshes,	Multicluster	Design	Concerns

container

intrusion/anomaly	detection	tooling,	Intrusion	and	Anomaly	Detection
Tooling

workload	isolation	and	RuntimeClass,	Workload	Isolation	and
RuntimeClass-Workload	Isolation	and	RuntimeClass	Best	Practices

Container	Advisor	(cAdvisor),	cAdvisor

container	builds,	Container	Builds

container	image	tagging,	Container	Image	Tagging

container	images	(see	image	management)

Container	Insights,	Monitoring	Tools

Container	Network	Interface	(CNI)	(see	CNI	plug-in)

Container	Storage	Interface	(CSI),	Container	Storage	Interface	and	FlexVolume

continuous	delivery	(CD),	Multicluster	Design	Concerns

(see	also	CI/CD	pipeline)

continuous	deployment	(CD),	Continuous	Deployment-Deployment	Strategies

defined,	Continuous	Deployment

deployment	strategies,	Deployment	Strategies-Deployment	Strategies

setting	up,	Setting	Up	CD

continuous	integration	(CI),	Continuous	Integration

(see	also	CI/CD	pipeline)

defined,	Continuous	Integration

setting	up,	Setting	Up	CI-Setting	Up	CI

control-plane	components,	Kubernetes	Metrics	Overview

Core	CNI	project,	The	CNI	Plug-in

CoreDNS	server,	CNAME-Based	Services	for	Stable	DNS	Names

CSI	(Container	Storage	Interface),	Container	Storage	Interface	and	FlexVolume

custom	controllers,	Deployment	and	Management	Patterns

Custom	Metrics	API,	Metrics	Server,	HPA	with	Custom	Metrics

custom	resource	definitions	(CRDs),	Managing	Namespaces,	Introducing
Gatekeeper

adding	resources	to	existing	cluster	with,	Extending	Kubernetes	Clusters

constraint	templates	as,	Defining	Constraint	Templates

defined,	Deployment	and	Management	Patterns

D

data	replication

Gatekeeper	and,	Data	Replication

multicluster	design	and,	Multicluster	Design	Concerns

data	scientists,	machine	learning	and,	Data	Scientist	Concerns

database

deploying	a	simple	stateful	database,	Deploying	a	Simple	Stateful
Database-Deploying	a	Simple	Stateful	Database

making	accessible	from	Kubernetes	(see	importing	services	into
Kubernetes)

Datadog,	Monitoring	Tools

dataset	storage,	for	machine	learning,	Dataset	storage	and	distribution	among
worker	nodes	during	training

debugging,	Enabling	Testing	and	Debugging

(see	also	logging)

declarative	model,	Managing	Configuration	Files,	Releases

DefaultStorageClass	admission	plug-in,	Storage	Classes

dependencies,	installation	of,	Initial	Setup

deployment

best	policy/governance	practices,	Policy	and	Governance	Best	Practices

sample	code	for,	Putting	It	All	Together-Putting	It	All	Together

stateful	database,	Deploying	a	Simple	Stateful	Database-Deploying	a
Simple	Stateful	Database

strategies	for	CI/CD	pipeline,	Deployment	Strategies-Deployment

Strategies

versioning,	releases,	and	rollouts,	Versioning,	Releases,	and	Rollouts-
Summary

Deployment	object,	Enabling	Active	Development

Deployment	resource,	Creating	a	Replicated	Application

developer	workflows	(see	workflows)

development	cluster

building,	Building	a	Development	Cluster

goals,	Goals

onboarding	users,	Onboarding	Users-Onboarding	Users

setting	up	shared	cluster	for	multiple	developers,	Setting	Up	a	Shared
Cluster	for	Multiple	Developers-Cluster-Level	Services

development	environment,	Setting	Up	a	Development	Environment	Best
Practices

disruption	budgets,	PodDisruptionBudgets

distributed	training,	Distributed	Training	on	Kubernetes,	Machine	Leaning	on
Kubernetes	Best	Practices

DNS	servers/resolvers,	CNAME-Based	Services	for	Stable	DNS	Names

Docker	image,	Container	Image	Tagging

docker-registry	secrets,	Secrets

Domain	Name	System	(DNS),	Load-Balancing	Traffic	Around	the	World

dot	notation,	Versioning

drivers,	machine	learning,	Libraries,	Drivers,	and	Kernel	Modules

dynamic	admission	controllers,	Admission	Controller	Types

E

EFK	(Elasticsearch,	Fluentd,	and	Kibana)	stack,	Logging	by	Using	an	EFK
Stack-Logging	by	Using	an	EFK	Stack,	Deployment	and	Management	Patterns

exporting	services	from	Kubernetes,	Exporting	Services	from	Kubernetes-
Integrating	External	Machines	and	Kubernetes

integrating	external	machines	and	Kubernetes,	Integrating	External
Machines	and	Kubernetes

internal	load	balancers	for,	Exporting	Services	by	Using	Internal	Load
Balancers

NodePorts	for,	Exporting	Services	on	NodePorts

external	identity	systems,	Onboarding	Users

external	services

best	practices	for	connecting	cluster	and	external	services,	Connecting
Cluster	and	External	Services	Best	Practices

exporting	services	from	Kubernetes,	Exporting	Services	from	Kubernetes-
Integrating	External	Machines	and	Kubernetes

importing	services	into	Kubernetes,	Importing	Services	into	Kubernetes-
Active	Controller-Based	Approaches

integrating	with	Kubernetes,	Integrating	External	Services	and	Kubernetes-
Summary

sharing	services	between	Kubernetes,	Sharing	Services	Between
Kubernetes

third-party	tools,	Third-Party	Tools

ExternalName	service	type,	Service	Type	ExternalName

F

failurePolicy	field,	Admission	Control	Best	Practices

Falco,	Intrusion	and	Anomaly	Detection	Tooling

feature	flag,	Deployment	Strategies

Federation,	Kubernetes	Federation-Kubernetes	Federation

Federation	v2	(KubeFed),	Kubernetes	Federation-Kubernetes	Federation

filesystem	layout,	Managing	Configuration	Files

flaky	tests,	Goals

flat	networks,	Multicluster	Design	Concerns

FlexVolume,	Container	Storage	Interface	and	FlexVolume

Fluentd,	Logging	by	Using	an	EFK	Stack

Flux,	The	GitOps	Approach	to	Managing	Clusters-The	GitOps	Approach	to
Managing	Clusters

Four	Golden	Signals,	Monitoring	Patterns,	CNI	Best	Practices

G

Gardener,	Multicluster	Management	Tools

Gatekeeper,	Introducing	Gatekeeper-Gatekeeper	Next	Steps

audit	and,	Audit

constraint,	Constraint

constraint	templates,	Constraint	template

data	replication,	Data	Replication

defining	constraint	templates,	Defining	Constraint	Templates

defining	constraints,	Defining	Constraints

demonstration	content,	Becoming	Familiar	with	Gatekeeper

example	policies,	Example	Policies

next	steps	for,	Gatekeeper	Next	Steps

rego	and,	Rego

terminology,	Gatekeeper	Terminology

UX,	UX

GCP	Stackdriver,	Monitoring	Tools

generic	secrets,	Secrets

Git,	Managing	Configuration	Files

GitOps,	The	GitOps	Approach	to	Managing	Clusters-The	GitOps	Approach	to
Managing	Clusters

GKE	(Google	Kubernetes	Engine),	Monitoring	Tools

global	deployment,	Worldwide	Application	Distribution	and	Staging-Summary

best	practices,	Worldwide	Rollout	Best	Practices

canary	region,	Canary	Region

constructing	a	global	rollout,	Constructing	a	Global	Rollout

distributing	your	image,	Distributing	Your	Image

identifying	region	types,	Identifying	Region	Types

load-balancing	traffic,	Load-Balancing	Traffic	Around	the	World

parameterizing	your	deployment,	Parameterizing	Your	Deployment

pre-rollout	validation,	Pre-Rollout	Validation-Pre-Rollout	Validation

reliably	rolling	out	software,	Reliably	Rolling	Out	Software	Around	the
World-Constructing	a	Global	Rollout

responding	to	problems,	When	Something	Goes	Wrong

Google	Cloud	Spanner,	Multicluster	Design	Concerns

Google	Four	Golden	Signals,	Monitoring	Patterns,	CNI	Best	Practices

Google	Kubernetes	Engine	(GKE),	Monitoring	Tools

Grafana,	Monitoring	Kubernetes	Using	Prometheus

graphics	processing	units	(GPUs),	Model	Training	on	Kubernetes-Training	your
first	model	on	Kubernetes

guaranteed	QoS,	Resource	Limits	and	Pod	Quality	of	Service

H

hard	multitenancy,	Why	Multiple	Clusters?

Hardware	Security	Module	(HSM),	Best	practices	specific	to	secrets

headless	service,	Creating	a	TCP	Load	Balancer	by	Using	Services,	Service
Type	ClusterIP

Heapster,	Metrics	Server

Helm

life	cycle	hook	with,	Common	Best	Practices	for	the	ConfigMap	and
Secrets	APIs

parameterizing	an	application	with,	Parameterizing	Your	Application	by
Using	Helm-Parameterizing	Your	Application	by	Using	Helm

rollouts	and,	Best	Practices	for	Versioning,	Releases,	and	Rollouts

testing	with,	Testing

Tiller	as	default	service	account,	RBAC	Best	Practices

tracking	releases	with,	Releases

helm	lint,	Testing

Horizontal	Pod	Autoscaler	(HPA),	Metrics	Server,	Application	Scaling-HPA
with	Custom	Metrics,	Scaling	with	HPA

HSM	(Hardware	Security	Module),	Best	practices	specific	to	secrets

HTTP	protocol	management,	Ingress	and	Ingress	Controllers

HTTP	traffic,	external	Ingress	for,	Setting	Up	an	External	Ingress	for	HTTP
Traffic

hyperparameter	tuning,	Model	Training	on	Kubernetes

I

image	management,	Best	Practices	for	Image	Management

importing	services	into	Kubernetes,	Importing	Services	into	Kubernetes-Active
Controller-Based	Approaches

active	controller-based	approaches,	Active	Controller-Based	Approaches

CNAME-based	services	for	stable	DNS	names,	CNAME-Based	Services
for	Stable	DNS	Names

selector-less	services	for	stable	IP	addresses,	Selector-Less	Services	for
Stable	IP	Addresses

InfluxDB,	Monitoring	Tools

Infrastructure	as	Code	(IaC),	Multicluster	Design	Concerns

Infrastructure	as	Software,	Deployment	and	Management	Patterns

Ingress

about,	Ingress	and	Ingress	Controllers

best	practices,	Services	and	Ingress	Controllers	Best	Practices

routing	traffic	to	a	static	file	server	with,	Using	Ingress	to	Route	Traffic	to	a
Static	File	Server-Using	Ingress	to	Route	Traffic	to	a	Static	File	Server

setting	up	for	HTTP	traffic,	Setting	Up	an	External	Ingress	for	HTTP
Traffic

integration	testing,	Pre-Rollout	Validation-Pre-Rollout	Validation

internal	load	balancers,	exporting	services	using,	Exporting	Services	by	Using
Internal	Load	Balancers

intrusion	detection,	Intrusion	and	Anomaly	Detection	Tooling

involuntary	disruptions,	PodDisruptionBudgets

Istio,	Service	Meshes

J

journal	service	(see	setting	up	a	basic	service)

JSON,	YAML	versus,	Managing	Configuration	Files

Just	in	Time	(JIT)	access	systems,	RBAC	Best	Practices

K

kernel	modules,	Libraries,	Drivers,	and	Kernel	Modules

Kibana,	Logging	by	Using	an	EFK	Stack

KQueen,	Multicluster	Management	Tools

kube-proxy,	Integrating	External	Machines	and	Kubernetes

kube-state-metrics,	kube-state-metrics

kube-system	namespace,	Admission	Control	Best	Practices

kubectl

audit	results	and,	Audit

CRDs	and,	Managing	Namespaces

debugging	tools,	Enabling	Testing	and	Debugging

expanding	UX	with,	Extending	the	Kubernetes	User	Experience

namespace	flag,	Managing	Resources	by	Using	Namespaces

kubectx,	Multicluster	Management	Tools

KubeFed	(Federation	v2),	Kubernetes	Federation-Kubernetes	Federation

Kubenet

about,	Kubenet

best	practices,	Kubenet	Best	Practices

kubens,	Multicluster	Management	Tools

Kubernetes	Federation,	Kubernetes	Federation-Kubernetes	Federation

Kubernetes	scheduler,	Kubernetes	Scheduler-Taints	and	Tolerations

advanced	scheduling	techniques,	Advanced	Scheduling	Techniques-Taints
and	Tolerations

nodeSelector,	nodeSelector

pod	affinity/anti-affinity,	Pod	Affinity	and	Anti-Affinity

predicate	function,	Predicates

priorities,	Priorities

taints,	Taints	and	Tolerations-Taints	and	Tolerations

tolerations,	Taints	and	Tolerations

Kubernetes	Services

creating	TCP	load	balancer	with,	Creating	a	TCP	Load	Balancer	by	Using
Services

elements	of,	Active	Controller-Based	Approaches

Kubernetes	Volumes	(see	Volumes)

L

libraries,	machine	learning,	Libraries,	Drivers,	and	Kernel	Modules

Limit	(resource	request),	Creating	a	Replicated	Application

LimitRange,	LimitRange

Linkerd2,	Service	Meshes

linters,	Extending	Kubernetes	Clusters

liveness	probes,	Alerting

load	balancing,	Load-Balancing	Traffic	Around	the	World

LoadBalancer	service	type,	Service	Type	LoadBalancer

logging,	Logging	Overview-Logging

alerting	and,	Alerting

best	practices,	Logging

EFK	stack	for,	Logging	by	Using	an	EFK	Stack-Logging	by	Using	an	EFK
Stack

metrics	collection	versus	log	collection,	Metrics	Versus	Logs

overview,	Logging	Overview-Logging	Overview

tools	for,	Tools	for	Logging

Logging	as	a	Service	(LaaS),	Cluster-Level	Services

M

machine	learning,	Running	Machine	Learning	in	Kubernetes-Summary

advantages	of	Kubernetes	for,	Why	Is	Kubernetes	Great	for	Machine
Learning?

best	practices,	Machine	Leaning	on	Kubernetes	Best	Practices

checkpoints	and	saving	models,	Checkpoints	and	saving	models

data	scientist	concerns,	Data	Scientist	Concerns

dataset	storage/distribution	among	worker	nodes	during	training,	Dataset
storage	and	distribution	among	worker	nodes	during	training

distributed	training,	Distributed	Training	on	Kubernetes

for	Kubernetes	cluster	admins,	Machine	Learning	for	Kubernetes	Cluster
Admins-Specialized	Protocols

libraries,	drivers,	and	kernel	modules,	Libraries,	Drivers,	and	Kernel
Modules

model	training,	Model	Training	on	Kubernetes-Libraries,	Drivers,	and
Kernel	Modules

networking,	Networking

resource	constraints,	Resource	Constraints

scheduling	idiosyncrasies,	Scheduling	idiosyncrasies

specialized	hardware,	Specialized	Hardware

specialized	protocols,	Specialized	Protocols

storage,	Storage

workflow	phases,	Machine	Learning	Workflow

master	branch,	Version	Control

Message	Passing	Interface	(MPI),	Specialized	Protocols

metrics

cAdvisor,	cAdvisor

choosing	metrics	to	monitor,	What	Metrics	Do	I	Monitor?

kube-state-metrics,	kube-state-metrics

log	collection	versus	metrics	collection,	Metrics	Versus	Logs

metrics-server,	Metrics	Server

overview,	Kubernetes	Metrics	Overview-kube-state-metrics

Metrics	Aggregator,	HPA	with	Custom	Metrics

Metrics	API,	Metrics	Server

Metrics	Server	API,	HPA	with	Custom	Metrics

metrics-server,	Metrics	Server

Microsoft	Azure,	Exporting	Services	by	Using	Internal	Load	Balancers

Microsoft	Azure	CosmosDB,	Multicluster	Design	Concerns

Microsoft	Azure	Monitor,	Monitoring	Tools

MNIST	dataset,	Training	your	first	model	on	Kubernetes

modules,	authorization,	Authorization	Modules-Webhook

monitoring,	Monitoring	and	Logging	in	Kubernetes-Monitoring	Kubernetes
Using	Prometheus

best	practices,	Monitoring

choosing	metrics	to	monitor,	What	Metrics	Do	I	Monitor?

cloud	provider	tools,	Monitoring	Tools

Kubernetes	metrics	overview,	Kubernetes	Metrics	Overview-kube-state-
metrics

metrics	vs.	logs,	Metrics	Versus	Logs

patterns,	Monitoring	Patterns

Prometheus	for,	Monitoring	Kubernetes	Using	Prometheus-Monitoring
Kubernetes	Using	Prometheus

techniques	for,	Monitoring	Techniques

tools	for,	Monitoring	Tools-Monitoring	Tools

MPI	(Message	Passing	Interface),	Specialized	Protocols

multiple	clusters,	Managing	Multiple	Clusters-Summary

best	practices	for	management	of,	Managing	Multiple	Clusters	Best
Practices

deployment/management	patterns,	Deployment	and	Management	Patterns

design	concerns,	Multicluster	Design	Concerns

GitOps	approach	to	managing,	The	GitOps	Approach	to	Managing
Clusters-The	GitOps	Approach	to	Managing	Clusters

Kubernetes	Federation,	Kubernetes	Federation-Kubernetes	Federation

managing,	Managing	Multiple	Clusters-Summary

managing	deployments	of,	Managing	Multiple	Cluster	Deployments-
Deployment	and	Management	Patterns

reasons	for	having,	Why	Multiple	Clusters?-Why	Multiple	Clusters?

tools	for	managing,	Multicluster	Management	Tools

MutatingWebhookConfiguration,	Configuring	Admission	Webhooks

mutation,	Admission	Control	Best	Practices

N

namespaces

aligning	workloads	to,	Network	Policy	Best	Practices

as	scopes	for	deployment	of	services,	Setting	Up	a	Shared	Cluster	for
Multiple	Developers

creating/securing,	Creating	and	Securing	a	Namespace-Creating	and
Securing	a	Namespace

for	resource	management,	Managing	Resources	by	Using	Namespaces

managing,	Managing	Namespaces

multitenancy	and,	Why	Multiple	Clusters?

setting	ResourceQuotas	on,	ResourceQuota-ResourceQuota

naming,	of	images,	Best	Practices	for	Image	Management

NCCL	(NVIDIA	Collective	Communications	Library),	Specialized	Protocols

Netflix,	chaos	engineering	at,	Testing	in	Production

network	address	translation	(NAT),	Multicluster	Design	Concerns

networking,	Networking,	Network	Security,	and	Service	Mesh-Network	Policy
Best	Practices

Kubernetes	network	principles,	Kubernetes	Network	Principles-Kubernetes
Network	Principles

machine	learning	and,	Networking

plug-ins,	Network	Plug-ins-CNI	Best	Practices

security	policy,	Network	Security	Policy-Network	Policy	Best	Practices

service	API	and,	Services	in	Kubernetes-Services	and	Ingress	Controllers
Best	Practices

NetworkPolicy	API,	Network	Security	Policy-Network	Policy	Best	Practices

about,	Network	Security	Policy-Network	Security	Policy

best	practices,	Network	Policy	Best	Practices

NGINX,	Using	Ingress	to	Route	Traffic	to	a	Static	File	Server,	Pod	Affinity	and
Anti-Affinity,	Ingress	and	Ingress	Controllers

NodePorts,	Service	Type	NodePort,	Exporting	Services	on	NodePorts

nodeSelector,	nodeSelector

NoSQL	databases,	Multicluster	Design	Concerns

NVIDIA	Collective	Communications	Library	(NCCL),	Specialized	Protocols

NVIDIA	device	plug-in,	Specialized	Hardware

O

onboarding,	Goals,	Onboarding	Users-Onboarding	Users

Open	Policy	Agent	(OPA),	Cloud-Native	Policy	Engine

data	replication	and,	Data	Replication

Gatekeeper	and,	Gatekeeper	Terminology

operational	management,	Multicluster	Design	Concerns

Operator	Framework,	Operators

Operators	(cloud	native	software),	Operators

P

parameterizing

global	deployments,	Parameterizing	Your	Deployment

of	application	with	Helm,	Parameterizing	Your	Application	by	Using	Helm-
Parameterizing	Your	Application	by	Using	Helm

passwords,	Managing	Authentication	with	Secrets-Managing	Authentication
with	Secrets

PersistentVolume,	Deploying	a	Simple	Stateful	Database,	PersistentVolume

PersistentVolumeClaim,	Deploying	a	Simple	Stateful	Database,
PersistentVolumeClaims

plug-ins

admission	control	best	practices,	Admission	Control	Best	Practices

CNI,	The	CNI	Plug-in

Kubenet,	Kubenet-CNI	Best	Practices

network,	Network	Plug-ins-CNI	Best	Practices

PodDisruptionBudget,	PodDisruptionBudgets

pods

admission	controllers,	Admission	Controllers

affinity/anti-affinity,	Pod	Affinity	and	Anti-Affinity

disruption	budgets,	PodDisruptionBudgets

LimitRange,	LimitRange

resource	limits	and	QoS,	Resource	Limits	and	Pod	Quality	of	Service-
Resource	Limits	and	Pod	Quality	of	Service

resource	management,	Pod	Resource	Management-Vertical	Pod	Autoscaler

resource	request,	Resource	Request

security,	Pod	and	Container	Security-PodSecurityPolicy	Next	Steps

PodSecurityPolicy	API,	PodSecurityPolicy	API-PodSecurityPolicy	Next	Steps,
Why	Are	They	Important?

best	practices,	PodSecurityPolicy	Best	Practices

challenges	in	real-world	environments,	PodSecurityPolicy	Challenges

enabling,	Enabling	PodSecurityPolicy-Enabling	PodSecurityPolicy

example,	Anatomy	of	a	PodSecurityPolicy-Anatomy	of	a
PodSecurityPolicy

policy	and	governance,	Policy	and	Governance	for	Your	Cluster-Summary

admission	controllers	and,	Why	Are	They	Important?

audit,	Audit

best	practices,	Policy	and	Governance	Best	Practices

cloud-native	policy	engine,	Cloud-Native	Policy	Engine

Gatekeeper	(see	Gatekeeper)

importance	of,	Why	Policy	and	Governance	Are	Important

Kubernetes	context	for,	How	Is	This	Policy	Different?

predicate	function,	Predicates

preStop	hook,	Deployment	Strategies,	StatefulSet	and	Operator	Best	Practices

priority	value,	Priorities

Prometheus,	Monitoring	Tools

monitoring	multiple	clusters	with,	Deployment	and	Management	Patterns-
Deployment	and	Management	Patterns

monitoring	with,	Monitoring	Kubernetes	Using	Prometheus-Monitoring
Kubernetes	Using	Prometheus

prometheus-operator,	Deployment	and	Management	Patterns-Deployment	and
Management	Patterns

Q

Quality	of	Service	(QoS),	resource	limits	and,	Resource	Limits	and	Pod	Quality
of	Service-Resource	Limits	and	Pod	Quality	of	Service

R

Rancher,	Multicluster	Management	Tools

RBAC	(role-based	access	control),	RBAC-RBAC	Best	Practices

best	practices,	RBAC	Best	Practices-RBAC	Best	Practices

locking	down	admission	webhook	configurations,	Admission	Control	Best
Practices

main	components,	RBAC	Primer

PodSecurityPolicy	API	and,	Anatomy	of	a	PodSecurityPolicy,

PodSecurityPolicy	Best	Practices

RoleBinding,	RoleBindings

roles,	Roles

rules,	Rules

subjects,	Subjects

RDMA	(Remote	Direct	Memory	Access),	Networking

readiness	probe,	Deployment	Strategies

recreate	strategy,	Rollouts

RED	(rate,	errors,	duration)	monitoring	pattern,	Monitoring	Patterns

Redis,	Managing	Authentication	with	Secrets-Managing	Authentication	with
Secrets

rego

defined,	Rego

policy	definition	and,	Defining	Constraint	Templates

releases,	Releases,	Best	Practices	for	Versioning,	Releases,	and	Rollouts

Remote	Direct	Memory	Access	(RDMA),	Networking

ReplicaSet,	Creating	a	Replicated	Application,	Rollouts,	Stateful	Applications

Request	(resource	request),	Creating	a	Replicated	Application

resource	management,	Resource	Management-Summary

admission	controllers	and,	Why	Are	They	Important?

advanced	scheduling	techniques,	Advanced	Scheduling	Techniques-Taints
and	Tolerations

application	scaling,	Application	Scaling

best	practices,	Resource	Management	Best	Practices

cluster	scaling,	Cluster	Scaling

HPA	with	custom	metrics,	Scaling	with	HPA

Kubernetes	scheduler,	Kubernetes	Scheduler-Taints	and	Tolerations

LimitRange,	LimitRange

namespaces	for,	Managing	Resources	by	Using	Namespaces

pod	disruption	budgets,	PodDisruptionBudgets

pods,	Pod	Resource	Management-Vertical	Pod	Autoscaler

resource	limits	and	pod	QoS,	Resource	Limits	and	Pod	Quality	of	Service-
Resource	Limits	and	Pod	Quality	of	Service

resource	request,	Resource	Request

setting	ResourceQuotas	on	namespaces,	ResourceQuota-ResourceQuota

Vertical	Pod	Autoscaler,	Vertical	Pod	Autoscaler

Resource	Metrics	API,	Metrics	Server

resource	request,	Resource	Request

ResourceQuotas,	Creating	and	Securing	a	Namespace,	ResourceQuota-
ResourceQuota

role-based	access	control	(see	RBAC)

RoleBinding,	Creating	and	Securing	a	Namespace,	RoleBindings

rolling	updates,	Deployment	Strategies-Deployment	Strategies

rolling	upgrade,	Performing	a	Rolling	Upgrade

rollingUpdate,	Rollouts

rollouts,	Rollouts

best	practices	for,	Best	Practices	for	Versioning,	Releases,	and	Rollouts

strategies	for	CI/CD	pipeline,	Deployment	Strategies-Deployment

Strategies

worldwide,	Reliably	Rolling	Out	Software	Around	the	World-Constructing
a	Global	Rollout

rules,	in	RBAC,	Rules

RuntimeClass

about,	Workload	Isolation	and	RuntimeClass-Runtime	Implementations

best	practices,	Workload	Isolation	and	RuntimeClass	Best	Practices

implementations,	Runtime	Implementations

using,	Using	RuntimeClass

workload	isolation	and,	Workload	Isolation	and	RuntimeClass-Workload
Isolation	and	RuntimeClass	Best	Practices

S

scaling

application	(see	application	scaling)

application	scaling,	Application	Scaling

clusters	(see	cluster	scaling)

HPA	with	custom	metrics,	Scaling	with	HPA

VPA,	Vertical	Pod	Autoscaler

scheduler	(see	Kubernetes	scheduler)

scoping,	admission	webhook,	Admission	Control	Best	Practices

secret	password,	Managing	Authentication	with	Secrets

Secrets

best	practices	specific	to,	Best	practices	specific	to	secrets

common	best	practices	for	ConfigMap	and	Secrets	APIs,	Common	Best
Practices	for	the	ConfigMap	and	Secrets	APIs-Common	Best	Practices	for
the	ConfigMap	and	Secrets	APIs

configuration	with,	Secrets

managing	authentication	with,	Managing	Authentication	with	Secrets-
Managing	Authentication	with	Secrets

security,	RBAC

(see	also	admission	controllers;	authorization)

admission	controllers,	Admission	Controllers

admission	controllers	and,	Why	Are	They	Important?

admission	webhook	best	practices,	Admission	Control	Best	Practices

intrusion/anomaly	detection	tooling,	Intrusion	and	Anomaly	Detection
Tooling

multicluster	design	and,	Why	Multiple	Clusters?

NetworkPolicy	API,	Network	Security	Policy-Network	Policy	Best
Practices

pods,	Pod	and	Container	Security-PodSecurityPolicy	Next	Steps

PodSecurityPolicy	API,	PodSecurityPolicy	API-PodSecurityPolicy	Next
Steps

RBAC,	RBAC-RBAC	Best	Practices

selector-less	Kubernetes	Services,	Selector-Less	Services	for	Stable	IP
Addresses

semantic	versioning,	Versioning,	Best	Practices	for	Versioning,	Releases,	and
Rollouts

service	API,	Services	in	Kubernetes-Services	and	Ingress	Controllers	Best
Practices

best	practices,	Services	and	Ingress	Controllers	Best	Practices

ClusterIP	service	type,	Service	Type	ClusterIP

ExternalName	service	type,	Service	Type	ExternalName

Ingress/Ingress	controllers,	Ingress	and	Ingress	Controllers

LoadBalancer	service	type,	Service	Type	LoadBalancer

NodePort	service	type,	Service	Type	NodePort

service	discovery,	Multicluster	Design	Concerns

service	mesh,	Service	Meshes-Service	Mesh	Best	Practices

about,	Service	Meshes-Service	Meshes

best	practices,	Service	Mesh	Best	Practices

Service	Mesh	Interface	(SMI),	Service	Meshes

service	type

ClusterIP,	Service	Type	ClusterIP

ExternalName,	Service	Type	ExternalName

LoadBalancer,	Service	Type	LoadBalancer

NodePort,	Service	Type	NodePort

Service-Level	Objectives	(SLOs),	Alerting

services,	Creating	a	TCP	Load	Balancer	by	Using	Services

(see	also	Kubernetes	Services)

cluster-level,	Cluster-Level	Services

creating	TCP	load	balancer	with,	Creating	a	TCP	Load	Balancer	by	Using
Services

deployment	best	practices,	Deploying	Services	Best	Practices

external	(see	external	services)

setting	up	basic	(see	setting	up	a	basic	service)

setting	up	a	basic	service,	Setting	Up	a	Basic	Service-Summary

application	overview,	Application	Overview

configuring	an	application	with	ConfigMaps,	Configuring	an	Application
with	ConfigMaps

creating	a	replicated	application,	Creating	a	Replicated	Application-
Creating	a	Replicated	Application

creating	a	replicated	service	using	deployments,	Creating	a	Replicated
Service	Using	Deployments-Creating	a	Replicated	Application

creating	a	TCP	load	balancer	by	using	Services,	Creating	a	TCP	Load
Balancer	by	Using	Services

deploying	a	simple	stateful	database,	Deploying	a	Simple	Stateful
Database-Deploying	a	Simple	Stateful	Database

deploying	services	best	practices,	Deploying	Services	Best	Practices

image	management	best	practices,	Best	Practices	for	Image	Management

managing	authentication	with	Secrets,	Managing	Authentication	with
Secrets-Managing	Authentication	with	Secrets

managing	configuration	files,	Managing	Configuration	Files

parameterizing	application	with	Helm,	Parameterizing	Your	Application	by
Using	Helm-Parameterizing	Your	Application	by	Using	Helm

setting	up	external	Ingress	for	HTTP	traffic,	Setting	Up	an	External	Ingress
for	HTTP	Traffic

using	Ingress	to	route	traffic	to	a	static	file	server,	Using	Ingress	to	Route
Traffic	to	a	Static	File	Server-Using	Ingress	to	Route	Traffic	to	a	Static	File
Server

shared	cluster

cluster-level	services,	Cluster-Level	Services

creating/securing	namespace,	Creating	and	Securing	a	Namespace-Creating
and	Securing	a	Namespace

managing	namespaces,	Managing	Namespaces

onboarding	users,	Onboarding	Users-Onboarding	Users

setting	up	for	multiple	developers,	Setting	Up	a	Shared	Cluster	for	Multiple
Developers-Cluster-Level	Services

sidecar	containers,	Extending	Kubernetes	Clusters

sidecar	pattern,	Logging	Overview

Sidecar	proxies,	Service	Meshes

SLOs	(Service-Level	Objectives),	Alerting

smart	scheduling,	Machine	Leaning	on	Kubernetes	Best	Practices

SMI	(Service	Mesh	Interface),	Service	Meshes

soft	multitenancy,	Why	Multiple	Clusters?

Software	as	a	Service	(SaaS)

hard	multitenancy	and,	Why	Multiple	Clusters?

state	management	and,	Deploying	a	Simple	Stateful	Database

Stackdriver	Kubernetes	Engine	Monitoring,	Monitoring	Tools

standard	admission	controllers,	Admission	Controller	Types

state

Kubernetes	storage,	Kubernetes	Storage-Kubernetes	Storage	Best	Practices

(see	also	storage)

managing,	Managing	State	and	Stateful	Applications-Summary

volumes	and	volume	mounts,	Volumes	and	Volume	Mounts

stateful	applications,	Stateful	Applications-Summary

Operators,	Operators

StatefulSets,	StatefulSets

stateful	database,	Deploying	a	Simple	Stateful	Database-Deploying	a	Simple
Stateful	Database

StatefulSets

about,	StatefulSets

best	practices,	StatefulSet	and	Operator	Best	Practices

static	file	server,	Using	Ingress	to	Route	Traffic	to	a	Static	File	Server-Using
Ingress	to	Route	Traffic	to	a	Static	File	Server

storage

best	practices,	Kubernetes	Storage	Best	Practices

for	machine	learning,	Storage

PersistentVolume,	Deploying	a	Simple	Stateful	Database,	PersistentVolume

PersistentVolumeClaim,	Deploying	a	Simple	Stateful	Database,
PersistentVolumeClaims

PersistentVolumeClaims,	PersistentVolumeClaims

state	and,	Kubernetes	Storage-Kubernetes	Storage	Best	Practices

StorageClass	objects,	Storage	Classes

subjects,	in	RBAC,	Subjects

supply-chain	attacks,	Best	Practices	for	Image	Management

Sysdig	Monitor,	Monitoring	Tools

T

taint-based	eviction,	Taints	and	Tolerations

taints,	Taints	and	Tolerations-Taints	and	Tolerations,	Machine	Leaning	on
Kubernetes	Best	Practices

TCP	(Transmission	Control	Protocol),	Setting	Up	an	External	Ingress	for	HTTP
Traffic,	Creating	a	TCP	Load	Balancer	by	Using	Services

TCP	load	balancer,	Creating	a	TCP	Load	Balancer	by	Using	Services

templating	system,	Parameterizing	Your	Application	by	Using	Helm

Terraform,	Multicluster	Design	Concerns

test	flakiness,	Goals

testing,	Goals

chaos	experiment	for,	A	Simple	Chaos	Experiment

CI/CD	pipeline,	Testing

developer	workflows	and,	Enabling	Testing	and	Debugging

in	production,	Testing	in	Production-Testing	in	Production

pre-global	rollout	validation,	Pre-Rollout	Validation-Pre-Rollout	Validation

Tiller,	RBAC	Best	Practices

time	to	live	(TTL),	Managing	Namespaces

tls	secret,	Secrets

tolerations,	Taints	and	Tolerations,	Machine	Leaning	on	Kubernetes	Best
Practices

traffic	shifting	(see	blue/green	deployments)

Transmission	Control	Protocol	(TCP),	Setting	Up	an	External	Ingress	for	HTTP
Traffic,	Creating	a	TCP	Load	Balancer	by	Using	Services

Transport	Layer	Security	(TLS)	secret,	Secrets

Transport	Layer	Security	(TLS)	termination,	Ingress	and	Ingress	Controllers

troubleshooting,	When	Something	Goes	Wrong

TTL	(time	to	live),	Managing	Namespaces

U

USE	(utilization,	saturation,	errors)	monitoring	pattern,	Monitoring	Patterns

UX	(user	experience)

extending/enhancing,	Extending	the	Kubernetes	User	Experience

Gatekeeper	and,	UX

V

ValidatingWebhookConfiguration,	Configuring	Admission	Webhooks

validation,	pre-global	rollout,	Pre-Rollout	Validation-Pre-Rollout	Validation

versioning,	Versioning

best	practices	for,	Best	Practices	for	Versioning,	Releases,	and	Rollouts

ConfigMap	and,	Configuring	an	Application	with	ConfigMaps

for	CI/CD	pipeline,	Version	Control

Vertical	Pod	Autoscaler	(VPA),	Metrics	Server,	Vertical	Pod	Autoscaler

Visual	Studio	(VS)	Code,	Enabling	Testing	and	Debugging

volumeMounts,	Common	Best	Practices	for	the	ConfigMap	and	Secrets	APIs,
Volumes	and	Volume	Mounts

Volumes,	Managing	Authentication	with	Secrets,	Volumes	and	Volume	Mounts

best	practices,	Volume	Best	Practices

defined,	Managing	Authentication	with	Secrets

FlexVolume,	Container	Storage	Interface	and	FlexVolume

PersistentVolume,	Deploying	a	Simple	Stateful	Database,	PersistentVolume

PersistentVolumeClaim,	Deploying	a	Simple	Stateful	Database,
PersistentVolumeClaims

voluntary	evictions,	PodDisruptionBudgets

VPA	(Vertical	Pod	Autoscaler),	Metrics	Server,	Vertical	Pod	Autoscaler

VS	(Visual	Studio)	Code,	Enabling	Testing	and	Debugging

W

Weaveworks	Flux,	The	GitOps	Approach	to	Managing	Clusters-The	GitOps
Approach	to	Managing	Clusters

web	application	firewall	(WAF),	Exporting	Services	from	Kubernetes

webhook	authorization	module,	Webhook

webhook	configuration,	Configuring	Admission	Webhooks-Configuring
Admission	Webhooks

white-box	monitoring,	Monitoring	Techniques

worker-node	components,	Kubernetes	Metrics	Overview

workflows,	Developer	Workflows-Summary

building	a	development	cluster,	Building	a	Development	Cluster

development	environment	best	practices,	Setting	Up	a	Development
Environment	Best	Practices

enabling	active	development,	Enabling	Active	Development

enabling	developer	workflows,	Enabling	Developer	Workflows

enabling	testing/debugging,	Enabling	Testing	and	Debugging

goals	for	building	out	development	clusters,	Goals

initial	setup,	Initial	Setup

setting	up	shared	cluster	for	multiple	developers,	Setting	Up	a	Shared
Cluster	for	Multiple	Developers-Cluster-Level	Services

workload	isolation,	Workload	Isolation	and	RuntimeClass	Best	Practices

(see	also	PodSecurityPolicy	API;	RuntimeClass)

worldwide	application	distribution/staging	(see	global	deployment)

Y

YAML,	JSON	versus,	Managing	Configuration	Files

About	the	Authors
Brendan	Burns	is	a	distinguished	engineer	at	Microsoft	Azure	and	cofounder	of
the	Kubernetes	open	source	project.	He’s	been	building	cloud	applications	for
more	than	a	decade.

Eddie	Villalba	is	a	software	engineer	with	Microsoft’s	Commercial	Software
Engineering	division,	focusing	on	open	source	cloud	and	Kubernetes.	He’s
helped	many	real-world	users	adopt	Kubernetes	for	their	applications.

Dave	Strebel	is	a	global	cloud	native	architect	at	Microsoft	Azure	focusing	on
open	source	cloud	and	Kubernetes.	He’s	deeply	involved	in	the	Kubernetes	open
source	project,	helping	with	the	Kubernetes	release	team	and	leading	SIG-Azure.

Lachlan	Evenson	is	a	principal	program	manager	on	the	container	compute
team	at	Microsoft	Azure.	He’s	helped	numerous	people	onboard	to	Kubernetes
through	both	hands-on	teaching	and	conference	talks.

Colophon
The	animal	on	the	cover	of	Kubernetes	Best	Practices	is	an	Old	World	mallard
duck	(Anas	platyrhynchos),	a	kind	of	dabbling	duck	that	feeds	on	the	surface	of
water	rather	than	diving	for	food.	Species	of	Anas	are	typically	separated	by
their	ranges	and	behavioral	cues;	however,	mallards	frequently	interbreed	with
other	species,	which	has	introduced	some	fully	fertile	hybrids.

Mallard	ducklings	are	precocial	and	capable	of	swimming	as	soon	as	they	hatch.
Juveniles	begin	flying	between	three	and	four	months	of	age.	They	reach	full
maturity	at	14	months	and	have	an	average	life	expectancy	of	3	years.

The	mallard	is	a	medium-sized	duck	that	is	just	slightly	heavier	than	most
dabbling	ducks.	Adults	average	23	inches	long	with	a	wingspan	of	36	inches,
and	weigh	2.5	pounds.	Ducklings	have	yellow	and	black	plumage.	At	around	six
months	of	age,	males	and	females	can	be	distinguished	visually	as	their	coloring
changes.	Males	have	green	head	feathers,	a	white	collar,	purple-brown	breast,
gray-brown	wings,	and	a	yellowish-orange	bill.	Females	are	mottled	brown,
which	is	the	color	of	most	female	dabbling	ducks.

Mallards	have	a	wide	range	of	habitats	across	both	northern	and	southern
hemispheres.	They	are	found	in	fresh-	and	salt-water	wetlands,	from	lakes	to
rivers	to	seashores.	Northern	mallards	are	migratory,	and	winter	father	south.
The	mallard	diet	is	highly	variable,	and	includes	plants,	seeds,	roots,	gastropods,
invertebrates,	and	crustaceans.

Brood	parasites	will	target	mallard	nests.	These	are	species	of	other	birds	who
may	lay	their	eggs	in	the	mallard	nest.	If	the	eggs	resemble	those	of	the	mallard,
the	mallard	will	accept	them	and	raise	the	hatchlings	with	their	own.

Mallards	must	contend	with	a	wide	variety	of	predators,	most	notably	foxes	and
birds	of	prey	such	as	falcons	and	eagles.	They	have	also	been	preyed	upon	by
catfish	and	pike.	Crows,	swans,	and	geese	have	all	been	known	to	attack	the
ducks	over	territorial	disputes.	Unihemispheric	sleep	(or	sleeping	with	one	eye
open),	which	allows	one	hemisphere	of	the	brain	to	sleep	while	the	other	is
awake,	was	first	noted	in	mallards.	It	is	common	among	aquatic	birds	as	a
predation-avoidance	behavior.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are
important	to	the	world.

The	cover	illustration	is	by	Jose	Marzan,	based	on	a	black	and	white	engraving
from	The	Animal	World.	The	cover	fonts	are	Gilroy	Semibold	and	Guardian
Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Setting Up a Basic Service
	Application Overview
	Managing Configuration Files
	Creating a Replicated Service Using Deployments
	Best Practices for Image Management
	Creating a Replicated Application

	Setting Up an External Ingress for HTTP Traffic
	Configuring an Application with ConfigMaps
	Managing Authentication with Secrets
	Deploying a Simple Stateful Database
	Creating a TCP Load Balancer by Using Services
	Using Ingress to Route Traffic to a Static File Server
	Parameterizing Your Application by Using Helm
	Deploying Services Best Practices
	Summary

	2. Developer Workflows
	Goals
	Building a Development Cluster
	Setting Up a Shared Cluster for Multiple Developers
	Onboarding Users
	Creating and Securing a Namespace
	Managing Namespaces
	Cluster-Level Services

	Enabling Developer Workflows
	Initial Setup
	Enabling Active Development
	Enabling Testing and Debugging
	Setting Up a Development Environment Best Practices
	Summary

	3. Monitoring and Logging in Kubernetes
	Metrics Versus Logs
	Monitoring Techniques
	Monitoring Patterns
	Kubernetes Metrics Overview
	cAdvisor
	Metrics Server
	kube-state-metrics

	What Metrics Do I Monitor?
	Monitoring Tools
	Monitoring Kubernetes Using Prometheus
	Logging Overview
	Tools for Logging
	Logging by Using an EFK Stack
	Alerting
	Best Practices for Monitoring, Logging, and Alerting
	Monitoring
	Logging
	Alerting

	Summary

	4. Configuration, Secrets, and RBAC
	Configuration Through ConfigMaps and Secrets
	ConfigMaps
	Secrets

	Common Best Practices for the ConfigMap and Secrets APIs
	RBAC
	RBAC Primer
	RBAC Best Practices

	Summary

	5. Continuous Integration, Testing, and Deployment
	Version Control
	Continuous Integration
	Testing
	Container Builds
	Container Image Tagging
	Continuous Deployment
	Deployment Strategies
	Testing in Production
	Setting Up a Pipeline and Performing a Chaos Experiment
	Setting Up CI
	Setting Up CD
	Performing a Rolling Upgrade
	A Simple Chaos Experiment

	Best Practices for CI/CD
	Summary

	6. Versioning, Releases, and Rollouts
	Versioning
	Releases
	Rollouts
	Putting It All Together
	Best Practices for Versioning, Releases, and Rollouts

	Summary

	7. Worldwide Application Distribution and Staging
	Distributing Your Image
	Parameterizing Your Deployment
	Load-Balancing Traffic Around the World
	Reliably Rolling Out Software Around the World
	Pre-Rollout Validation
	Canary Region
	Identifying Region Types
	Constructing a Global Rollout

	When Something Goes Wrong
	Worldwide Rollout Best Practices
	Summary

	8. Resource Management
	Kubernetes Scheduler
	Predicates
	Priorities

	Advanced Scheduling Techniques
	Pod Affinity and Anti-Affinity
	nodeSelector
	Taints and Tolerations

	Pod Resource Management
	Resource Request
	Resource Limits and Pod Quality of Service
	PodDisruptionBudgets
	Managing Resources by Using Namespaces
	ResourceQuota
	LimitRange
	Cluster Scaling
	Application Scaling
	Scaling with HPA
	HPA with Custom Metrics
	Vertical Pod Autoscaler

	Resource Management Best Practices
	Summary

	9. Networking, Network Security, and Service Mesh
	Kubernetes Network Principles
	Network Plug-ins
	Kubenet
	Kubenet Best Practices
	The CNI Plug-in
	CNI Best Practices

	Services in Kubernetes
	Service Type ClusterIP
	Service Type NodePort
	Service Type ExternalName
	Service Type LoadBalancer
	Ingress and Ingress Controllers
	Services and Ingress Controllers Best Practices

	Network Security Policy
	Network Policy Best Practices

	Service Meshes
	Service Mesh Best Practices

	Summary

	10. Pod and Container Security
	PodSecurityPolicy API
	Enabling PodSecurityPolicy
	Anatomy of a PodSecurityPolicy
	PodSecurityPolicy Challenges
	PodSecurityPolicy Best Practices
	PodSecurityPolicy Next Steps

	Workload Isolation and RuntimeClass
	Using RuntimeClass
	Runtime Implementations
	Workload Isolation and RuntimeClass Best Practices

	Other Pod and Container Security Considerations
	Admission Controllers
	Intrusion and Anomaly Detection Tooling

	Summary

	11. Policy and Governance for Your Cluster
	Why Policy and Governance Are Important
	How Is This Policy Different?
	Cloud-Native Policy Engine
	Introducing Gatekeeper
	Example Policies
	Gatekeeper Terminology
	Defining Constraint Templates
	Defining Constraints
	Data Replication
	UX

	Audit
	Becoming Familiar with Gatekeeper
	Gatekeeper Next Steps

	Policy and Governance Best Practices
	Summary

	12. Managing Multiple Clusters
	Why Multiple Clusters?
	Multicluster Design Concerns
	Managing Multiple Cluster Deployments
	Deployment and Management Patterns

	The GitOps Approach to Managing Clusters
	Multicluster Management Tools
	Kubernetes Federation
	Managing Multiple Clusters Best Practices
	Summary

	13. Integrating External Services and Kubernetes
	Importing Services into Kubernetes
	Selector-Less Services for Stable IP Addresses
	CNAME-Based Services for Stable DNS Names
	Active Controller-Based Approaches

	Exporting Services from Kubernetes
	Exporting Services by Using Internal Load Balancers
	Exporting Services on NodePorts
	Integrating External Machines and Kubernetes

	Sharing Services Between Kubernetes
	Third-Party Tools
	Connecting Cluster and External Services Best Practices
	Summary

	14. Running Machine Learning in Kubernetes
	Why Is Kubernetes Great for Machine Learning?
	Machine Learning Workflow
	Machine Learning for Kubernetes Cluster Admins
	Model Training on Kubernetes
	Distributed Training on Kubernetes
	Resource Constraints
	Specialized Hardware
	Libraries, Drivers, and Kernel Modules
	Storage
	Networking
	Specialized Protocols

	Data Scientist Concerns
	Machine Leaning on Kubernetes Best Practices
	Summary

	15. Building Higher-Level Application Patterns on Top of Kubernetes
	Approaches to Developing Higher-Level Abstractions
	Extending Kubernetes
	Extending Kubernetes Clusters
	Extending the Kubernetes User Experience

	Design Considerations When Building Platforms
	Support Exporting to a Container Image
	Support Existing Mechanisms for Service and Service Discovery

	Building Application Platforms Best Practices
	Summary

	16. Managing State and Stateful Applications
	Volumes and Volume Mounts
	Volume Best Practices

	Kubernetes Storage
	PersistentVolume
	PersistentVolumeClaims
	Storage Classes
	Kubernetes Storage Best Practices

	Stateful Applications
	StatefulSets
	Operators
	StatefulSet and Operator Best Practices

	Summary

	17. Admission Control and Authorization
	Admission Control
	What Are They?
	Why Are They Important?
	Admission Controller Types
	Configuring Admission Webhooks
	Admission Control Best Practices

	Authorization
	Authorization Modules
	Authorization Best Practices

	Summary

	18. Conclusion
	Index

