O'REILLY"

Kubernetes
Best Practices

Blueprints for Building Successful Applications
on Kubernetes

Brendan Burns, Eddie Villalba,
Dave Strebel & Lachlan Evenson

Kubernetes Best Practices

Blueprints for Building Successful Applications on
Kubernetes

Brendan Burns, Eddie Villalba, Dave Strebel, and
Lachlan Evenson

Beijing - Boston « Farnham - Sebastopol - Tokyo

Kubernetes Best Practices
by Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson

Copyright © 2020 Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan
Evenson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For
more information, contact our corporate/institutional sales department: 800-998-
9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Virginia Wilson
Production Editor: Elizabeth Kelly
Copyeditor: Charles Roumeliotis
Proofreader: Sonia Saruba

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato

Cover Designer: Karen Montgomery

[llustrator: Rebecca Demarest

November 2019: First Edition
Revision History for the First Release

e 2019-11-12: First Release

http://oreilly.com

See https://www.oreilly.com/catalog/errata.csp?isbn=0636920273219 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes
Best Practices, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent
the publisher’s views. While the publisher and the authors have used good faith
efforts to ensure that the information and instructions contained in this work are
accurate, the publisher and the authors disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting
from the use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-492-05647-8
[LSI]

https://www.oreilly.com/catalog/errata.csp?isbn=0636920273219

Preface

Who Should Read This Book

Kubernetes is the de facto standard for cloud native development. It is a
powerful tool that can make your next application easier to develop, faster to
deploy, and more reliable to operate. However, unlocking the power of
Kubernetes requires using it correctly. This book is intended for anyone who is
deploying real-world applications to Kubernetes and is interested in learning
patterns and practices they can apply to the applications that they build on top of
Kubernetes.

Importantly, this book is not an introduction to Kubernetes. We assume that you
have a basic familiarity with the Kubernetes API and tools, and that you know
how to create and interact with a Kubernetes cluster. If you are looking to learn
Kubernetes, there are numerous great resources out there, such as Kubernetes:
Up and Running (O’Reilly) that can give you an introduction.

Instead, this book is a resource for anyone who wants to dive deep on how to
deploy specific applications and workloads on Kubernetes. It should be useful to
you whether you are about to deploy your first application onto Kubernetes or
you’ve been using Kubernetes for years.

Why We Wrote This Book

Between the four of us, we have significant experience helping a wide variety of
users deploy their applications onto Kubernetes. Through this experience, we
have seen where people struggle, and we have helped them find their way to
success. When sitting down to write this book, we attempted to capture these
experiences so that many more people could learn by reading the lessons that we
learned from these real-world experiences. It’s our hope that by committing our
experiences to writing, we can scale our knowledge and allow you to be
successful deploying and managing your application on Kubernetes on your
oWn.

https://oreil.ly/ziNRK

Navigating This Book

Although you might read this book from cover to cover in a single sitting, that is
not really how we intended you to use it. Instead, we designed this book to be a
collection of standalone chapters. Each chapter gives a complete overview of a
particular task that you might need to accomplish with Kubernetes. We expect
people to dive into the book to learn about a specific topic or interest, and then
leave the book alone, only to return when a new topic comes up.

Despite this standalone approach, there are some themes that span the book.
There are several chapters on developing applications on Kubernetes. Chapter 2
covers developer workflows. Chapter 5 discusses Continuous Integration and
testing. Chapter 15 covers building higher-level platforms on top of Kubernetes,
and Chapter 16 discusses managing state and stateful applications. In addition to
developing applications, there are several chapters on operating services in
Kubernetes. Chapter 1 covers the setup of a basic service, and Chapter 3 covers
monitoring and metrics. Chapter 4 covers configuration management, while
Chapter 6 covers versioning and releases. Chapter 7 covers deploying your
application around the world.

There are also several chapters on cluster management, including Chapter 8 on
resource management, Chapter 9 on networking, Chapter 10 on pod security,
Chapter 11 on policy and governance, Chapter 12 on managing multiple clusters,
and Chapter 17 on admission control and authorization. Finally there are several
chapters that are truly independent; these cover machine learning (Chapter 14)
and integrating with external services (Chapter 13).

Though it can be useful to read all of the chapters before you actually attempt
the topic in the real world, our primary hope is that you will treat this book as a
reference. It is intended as a guide as you put these topics to practice in the real
world.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types,
environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download
at https://oreil.ly/KBPsample.

If you have a technical question or a problem using the code examples, please
send email to bookquestions@oreilly.com.

https://oreil.ly/KBPsample
mailto:bookquestions@oreilly.com

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing
examples from O’Reilly books does require permission. Answering a question
by citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Kubernetes Best
Practices by Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson
(O’Reilly). Copyright 2020 Brendan Burns, Eddie Villalba, Dave Strebel, and
Lachlan Evenson, 978-1-492-05647-8.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live training
courses, in-depth learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other publishers. For more
information, please visit http://oreilly.com.

How to Contact Us

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

Please address comments and questions concerning this book to the publisher:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707-829-0104 (fax)
We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/KubBP.

Email bookquestions@oreilly.com to comment or ask technical questions about
this book.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Brendan would like to thank his wonderful family, Robin, Julia, and Ethan, for
the love and support of everything he does; the Kubernetes community, without
whom none of this would be possible; and his fabulous coauthors, without whom
this book would not exist.

Dave would like to thank his beautiful wife, Jen, and their three children, Max,
Maddie, and Mason, for all of their support. He would also like to thank the

Kubernetes community for all the advice and help they have provided over the
years. Finally, he would like to thank his coauthors in making this adventure a

https://oreil.ly/KubBP
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

reality.

Lachlan would like to thank his wife and three children for their love and
support. He would also like to thank everyone in the Kubernetes community,
including the wonderful individuals who have taken the time to teach him over
the years. He also would like to send a special thanks to Joseph Sandoval for his
mentorship. And, finally, he would like to thank his fantastic coauthors for
making this book possible.

Eddie would like to thank his wife, Sandra, for her moral support and for letting
him disappear for hours on end to write while she was in the final trimester of
their first pregnancy. He would also like to thank his new daughter, Giavanna,
for giving him the drive to push forward. Finally, he would like to thank the
Kubernetes community and his coauthors who have always been guideposts in
his journey to be cloud native.

We would all like to thank Virginia Wilson for her work in developing the
manuscript and helping us bring all of our ideas together, and Bridget Kromhout,
Bilgin Ibryam, Roland Huf3, and Justin Domingus for their attention to the
finishing touches.

Chapter 1. Setting Up a Basic
Service

This chapter describes the practices for setting up a simple multitier application
in Kubernetes. The application consists of a simple web application and a
database. Though this might not be the most complicated application, it is a good
place to start to orient to managing an application in Kubernetes.

Application Overview

The application that we will use for our sample isn’t particularly complex. It’s a
simple journal service that stores its data in a Redis backend. It has a separate
static file server using NGINX. It presents two web paths on a single URL. The
paths are one for the journal’s RESTful application programming interface
(API), https://my-host.io/api, and a file server on the main URL, https:/my-
host.io. It uses the Let’s Encrypt service for managing Secure Sockets Layer
(SSL) certificates. Figure 1-1 presents a diagram of the application. Throughout
this chapter, we build up this application, first using YAML configuration files
and then Helm charts.

https://my-host.io/api
https://my-host.io
https://letsencrypt.org

Ingress HTTP Balancer

v v

AP| Server Service Static File Server Service
API Pod I-l_ Static File Pod
v ¥
Redis Write Service Redis Read Service

>I-I_ Redis P0::II

Figure 1-1. An application diagram

Managing Configuration Files

Before we get into the details of how to construct this application in Kubernetes,
it is worth discussing how we manage the configurations themselves. With
Kubernetes, everything is represented declaratively. This means that you write
down the desired state of the application in the cluster (generally in YAML or
JSON files), and these declared desired states define all of the pieces of your
application. This declarative approach is far preferable to an imperative
approach in which the state of your cluster is the sum of a series of changes to
the cluster. If a cluster is configured imperatively, it is very difficult to
understand and replicate how the cluster came to be in that state. This makes it
very challenging to understand or recover from problems with your application.

When declaring the state of your application, people typically prefer YAML to
JSON, though Kubernetes supports them both. This is because YAML is

somewhat less verbose and more human editable than JSON. However, it’s
worth noting that YAML is indentation sensitive; often errors in Kubernetes
configurations can be traced to incorrect indentation in YAML. If things aren’t
behaving as expected, indentation is a good thing to check.

Because the declarative state contained in these YAML files serves as the source
of truth for your application, correct management of this state is critical to the
success of your application. When modifying your application’s desired state,
you will want to be able to manage changes, validate that they are correct, audit
who made changes, and possibly roll things back if they fail. Fortunately, in the
context of software engineering, we have already developed the tools necessary
to manage both changes to the declarative state as well as audit and rollback.
Namely, the best practices around both version control and code review directly
apply to the task of managing the declarative state of your application.

These days most people store their Kubernetes configurations in Git. Though the
specific details of the version control system are unimportant, many tools in the
Kubernetes ecosystem expect files in a Git repository. For code review there is
much more heterogeneity, though clearly GitHub is quite popular, others use on-
premises code review tools or services. Regardless of how you implement code
review for your application configuration, you should treat it with the same
diligence and focus that you apply to source control.

When it comes to laying out the filesystem for your application, it’s generally
worthwhile to use the folder organization that comes with the filesystem to
organize your components. Typically, a single directory is used to encompass an
Application Service for whatever definition of Application Service is useful for
your team. Within that directory, subdirectories are used for subcomponents of
the application.

For our application, we lay out the files as follows:

journal/
frontend/
redis/
fileserver/

Within each directory are the concrete YAML files needed to define the service.
As you’ll see later on, as we begin to deploy our application to multiple different

regions or clusters, this file layout will become more complicated.

Creating a Replicated Service Using
Deployments

To describe our application, we’ll begin at the frontend and work downward.
The frontend application for the journal is a Node.js application implemented in
TypeScript. The complete application is slightly too large to include in the book.
The application exposes an HTTP service on port 8080 that serves requests to
the /api/* path and uses the Redis backend to add, delete, or return the current
journal entries. This application can be built into a container image using the
included Dockerfile and pushed to your own image repository. Then, substitute
this image name in the YAML examples that follow.

Best Practices for Image Management

Though in general, building and maintaining container images is beyond the
scope of this book, it’s worthwhile to identify some general best practices for
building and naming images. In general, the image build process can be
vulnerable to “supply-chain attacks.” In such attacks, a malicious user injects
code or binaries into some dependency from a trusted source that is then built
into your application. Because of the risk of such attacks, it is critical that when
you build your images you base them on only well-known and trusted image
providers. Alternately, you can build all your images from scratch. Building
from scratch is easy for some languages (e.g., Go) that can build static binaries,
but it is significantly more complicated for interpreted languages like Python,
JavaScript, or Ruby.

The other best practices for images relate to naming. Though the version of a
container image in an image registry is theoretically mutable, you should treat
the version tag as immutable. In particular, some combination of the semantic
version and the SHA hash of the commit where the image was built is a good
practice for naming images (e.g., v1.0.1-bfeda01f). If you don’t specify an image
version, latest is used by default. Although this can be convenient in
development, it is a bad idea for production usage because latest is clearly
being mutated every time a new image is built.

https://oreil.ly/70kFT

Creating a Replicated Application

Our frontend application is stateless; it relies entirely on the Redis backend for
its state. As a result, we can replicate it arbitrarily without affecting traffic.
Though our application is unlikely to sustain large-scale usage, it’s still a good
idea to run with at least two replicas so that you can handle an unexpected crash
or roll out a new version of the application without downtime.

Though in Kubernetes, a ReplicaSet is the resource that manages replicating a
containerized application, so it is not a best practice to use it directly. Instead,
you use the Deployment resource. A Deployment combines the replication
capabilities of ReplicaSet with versioning and the ability to perform a staged
rollout. By using a Deployment you can use Kubernetes’ built-in tooling to
move from one version of the application to the next.

The Kubernetes Deployment resource for our application looks as follows:

apiVersion: extensions/vibetal
kind: Deployment
metadata:
labels:
app: frontend
name: frontend
namespace: default
spec:
replicas: 2
selector:
matchLabels:
app: frontend
template:
metadata:

labels:
app: frontend

spec:

containers:

- image: my-repo/journal-server:vl-abcde
imagePullPolicy: IfNotPresent
name: frontend
resources:

request:
cpu: "1.0"
memory: "1G"
limits:
cpu: "1.0"
memory: "1G"

There are several things to note in this Deployment. First is that we are using
Labels to identify the Deployment as well as the ReplicaSets and the pods that
the Deployment creates. We’ve added the layer: frontend label to all of these
resources so that we can examine all resources for a particular layer in a single
request. You’ll see that as we add other resources, we’ll follow the same
practice.

Additionally, we’ve added comments in a number of places in the YAML.
Although these comments don’t make it into the Kubernetes resource stored on
the server, just like comments in code, they serve to help guide people who are
looking at this configuration for the first time.

You should also note that for the containers in the Deployment we have specified
both Request and Limit resource requests, and we’ve set Request equal to Limit.
When running an application, the Request is the reservation that is guaranteed on
the host machine where it runs. The Limit is the maximum resource usage that
the container will be allowed. When you are starting out, setting Request equal
to Limit will lead to the most predictable behavior of your application. This
predictability comes at the expense of resource utilization. Because setting
Request equal to Limit prevents your applications from overscheduling or
consuming excess idle resources, you will not be able to drive maximal
utilization unless you tune Request and Limit very, very carefully. As you
become more advanced in your understanding of the Kubernetes resource model,
you might consider modifying Request and Limit for your application
independently, but in general most users find that the stability from predictability
is worth the reduced utilization.

Now that we have the Deployment resource defined, we’ll check it into version
control, and deploy it to Kubernetes:

git add frontend/deployment.yaml
git commit -m "Added deployment" frontend/deployment.yaml
kubectl apply -f frontend/deployment.yaml

It is also a best practice to ensure that the contents of your cluster exactly match
the contents of your source control. The best pattern to ensure this is to adopt a
GitOps approach and deploy to production only from a specific branch of your
source control, using Continuous Integration (CI)/Continuous Delivery (CD)

automation. In this way you’re guaranteed that source control and production
match. Though a full CI/CD pipeline might seem excessive for a simple
application, the automation by itself, independent of the reliability it provides, is
usually worth the time taken to set it up. And CI/CD is extremely difficult to
retrofit into an existing, imperatively deployed application.

There are also some pieces of this application description YAML (e.g., the
ConfigMap and secret volumes) as well as pod Quality of Service that we
examine in later sections.

Setting Up an External Ingress for HTTP Traffic

The containers for our application are now deployed, but it’s not currently
possible for anyone to access the application. By default, cluster resources are
available only within the cluster itself. To expose our application to the world,
we need to create a Service and load balancer to provide an external IP address
and to bring traffic to our containers. For the external exposure we are actually
going to use two Kubernetes resources. The first is a Service that load-balances
Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) traffic.
In our case, we’re using the TCP protocol. And the second is an Ingress
resource, which provides HTTP(S) load balancing with intelligent routing of
requests based on HTTP paths and hosts. With a simple application like this, you
might wonder why we choose to use the more complex Ingress, but as you’ll see
in later sections, even this simple application will be serving HTTP requests
from two different services. Furthermore, having an Ingress at the edge enables
flexibility for future expansion of our service.

Before the Ingress resource can be defined, there needs to be a Kubernetes
Service for the Ingress to point to. We’ll use Labels to direct the Service to the
pods that we created in the previous section. The Service is significantly simpler
to define than the Deployment and looks as follows:

apiVersion: vi
kind: Service
metadata:
labels:
app: frontend
name: frontend

namespace: default

spec:

ports:

- port: 8080
protocol: TCP
targetPort: 8080

selector:
app: frontend

type: ClusterIP

After you’ve defined the Service, you can define an Ingress resource. Unlike
Service resources, Ingress requires an Ingress controller container to be running
in the cluster. There are a number of different implementations you can choose
from, either provided by your cloud provider, or implemented using open source
servers. If you choose to install an open source ingress provider, it’s a good idea
to use the Helm package manager to install and maintain it. The nginx or
haproxy Ingress providers are popular choices:

apiVersion: extensions/vibetal
kind: Ingress
metadata:
name: frontend-ingress
spec:
rules:
- http:
paths:
- path: /api
backend:
serviceName: frontend
servicePort: 8080

Configuring an Application with ConfigMaps

Every application needs a degree of configuration. This could be the number of
journal entries to display per page, the color of a particular background, a special
holiday display, or many other types of configuration. Typically, separating such
configuration information from the application itself is a best practice to follow.

There are a couple of different reasons for this separation. The first is that you
might want to configure the same application binary with different
configurations depending on the setting. In Europe you might want to light up an

https://helm.sh

Easter special, whereas in China you might want to display a special for Chinese
New Year. In addition to this environmental specialization, there are agility
reasons for the separation. Usually a binary release contains multiple different
new features; if you turn on these features via code, the only way to modify the
active features is to build and release a new binary, which can be an expensive
and slow process.

The use of configuration to activate a set of features means that you can quickly
(and even dynamically) activate and deactivate features in response to user needs
or application code failures. Features can be rolled out and rolled back on a per-
feature basis. This flexibility ensures that you are continually making forward
progress with most features even if some need to be rolled back to address
performance or correctness problems.

In Kubernetes this sort of configuration is represented by a resource called a
ConfigMap. A ConfigMap contains multiple key/value pairs representing
configuration information or a file. This configuration information can be
presented to a container in a pod via either files or environment variables.
Imagine that you want to configure your online journal application to display a
configurable number of journal entries per page. To achieve this, you can define
a ConfigMap as follows:

kubectl create configmap frontend-config --from-literal=journalEntries=10

To configure your application, you expose the configuration information as an
environment variable in the application itself. To do that, you can add the

following to the container resource in the Deployment that you defined earlier:

The containers array in the PodTemplate inside the Deployment
containers:
- name: frontend

env:
- name: JOURNAL_ENTRIES
valueFrom:
configMapKeyRef:
name: frontend-config
key: journalEntries

Although this demonstrates how you can use a ConfigMap to configure your
application, in the real world of Deployments, you’ll want to roll out regular
changes to this configuration with weekly rollouts or even more frequently. It
might be tempting to roll this out by simply changing the ConfigMap itself, but
this isn’t really a best practice. There are several reasons for this: the first is that
changing the configuration doesn’t actually trigger an update to existing pods.
Only when the pod is restarted is the configuration applied. Because of this, the
rollout isn’t health based and can be ad hoc or random.

A better approach is to put a version number in the name of the ConfigMap
itself. Instead of calling it frontend-config, call it frontend-config-vi1.
When you want to make a change, instead of updating the ConfigMap in place,
you create a new v2 ConfigMap, and then update the Deployment resource to
use that configuration. When you do this, a Deployment rollout is automatically
triggered, using the appropriate health checking and pauses between changes.
Furthermore, if you ever need to rollback, the v1 configuration is sitting in the
cluster and rollback is as simple as updating the Deployment again.

Managing Authentication with Secrets

So far, we haven’t really discussed the Redis service to which our frontend is
connecting. But in any real application we need to secure connections between
our services. In part this is to ensure the security of users and their data, and in
addition, it is essential to prevent mistakes like connecting a development
frontend with a production database.

The Redis database is authenticated using a simple password. It might be
convenient to think that you would store this password in the source code of
your application, or in a file in your image, but these are both bad ideas for a
variety of reasons. The first is that you have leaked your secret (the password)
into an environment where you aren’t necessarily thinking about access control.
If you put a password into your source control, you are aligning access to your
source with access to all secrets. This is probably not correct. You probably will
have a broader set of users who can access your source code than should really
have access to your Redis instance. Likewise, someone who has access to your
container image shouldn’t necessarily have access to your production database.

In addition to concerns about access control, another reason to avoid binding
secrets to source control and/or images is parameterization. You want to be able
to use the same source code and images in a variety of environments (e.g.,
development, canary, and production). If the secrets are tightly bound in source
code or image, you need a different image (or different code) for each
environment.

Having seen ConfigMaps in the previous section, you might immediately think
that the password could be stored as a configuration and then populated into the
application as an application-specific configuration. You’re absolutely correct to
believe that the separation of configuration from application is the same as the
separation of secrets from application. But the truth is that a secret is an
important concept by itself. You likely want to handle access control, handling,
and updates of secrets in a different way than a configuration. More important,
you want your developers thinking differently when they are accessing secrets
than when they are accessing configuration. For these reasons, Kubernetes has a
built-in Secret resource for managing secret data.

You can create a secret password for your Redis database as follows:
kubectl create secret generic redis-passwd --from-literal=passwd=${RANDOM}

Obviously, you might want to use something other than a random number for
your password. Additionally, you likely want to use a secret/key management
service, either via your cloud provider, like Microsoft Azure Key Vault, or an
open source project, like HashiCorp’s Vault. When you are using a key
management service, they generally have tighter integration with Kubernetes
secrets.

NOTE

Secrets in Kubernetes are stored unecrypted by default. If you want to store secrets encrypted,
you can integrate with a key provider to give you a key that Kubernetes will use to encrypt all
of the secrets in the cluster. Note that although this secures the keys against direct attacks to the
etcd database, you still need to ensure that access via the Kubernetes API server is properly
secured.

After you have stored the Redis password as a secret in Kubernetes, you then
need to bind that secret to the running application when deployed to Kubernetes.
To do this, you can use a Kubernetes Volume. A Volume is effectively a file or
directory that can be mounted into a running container at a user-specified
location. In the case of secrets, the Volume is created as a tmpfs RAM-backed
filesystem and then mounted into the container. This ensures that even if the
machine is physically compromised (quite unlikely in the cloud, but possible in
the datacenter), the secrets are much more difficult to obtain by the attacker.

To add a secret volume to a Deployment, you need to specify two new entries in
the YAML for the Deployment. The first is a volume entry for the pod that adds
the volume to the pod:

volumes:

- name: passwd-volume
secret:
secretName: redis-passwd

With the volume in the pod, you need to mount it into a specific container. You
do this via the volumeMounts field in the container description:

volumeMounts:
- name: passwd-volume
readOonly: true
mountPath: "/etc/redis-passwd"

This mounts the secret volume into the redis-passwd directory for access from
the client code. Putting this all together, you have the complete Deployment as
follows:

apiVersion: extensions/vibetal
kind: Deployment
metadata:

labels:

app: frontend

name: frontend

namespace: default
spec:

replicas: 2
selector:
matchLabels:
app: frontend
template:
metadata:

labels:
app: frontend

spec:

containers:

- image: my-repo/journal-server:vl-abcde
imagePullPolicy: IfNotPresent
name: frontend
volumeMounts:

- name: passwd-volume
readOonly: true
mountPath: "/etc/redis-passwd"
resources:
request:
cpu: "1.0"
memory: "1G"
limits:
cpu: "1.0"
memory: "1G"

volumes:

- name: passwd-volume
secret:
secretName: redis-passwd

At this point we have configured the client application to have a secret available
to authenticate to the Redis service. Configuring Redis to use this password is
similar; we mount it into the Redis pod and load the password from the file.

Deploying a Simple Stateful Database

Although conceptually deploying a stateful application is similar to deploying a
client like our frontend, state brings with it more complications. The first is that
in Kubernetes a pod can be rescheduled for a number of reasons, such as node
health, an upgrade, or rebalancing. When this happens, the pod might move to a
different machine. If the data associated with the Redis instance is located on
any particular machine or within the container itself, that data will be lost when
the container migrates or restarts. To prevent this, when running stateful
workloads in Kubernetes its important to use remote PersistentVolumes to

manage the state associated with the application.

There is a wide variety of different implementations of PersistentVolumes in
Kubernetes, but they all share common characteristics. Like secret volumes
described earlier, they are associated with a pod and mounted into a container at
a particular location. Unlike secrets, PersistentVolumes are generally remote
storage mounted through some sort of network protocol, either file based, such
as Network File System (NFS) or Server Message Block (SMB), or block based
(iSCSI, cloud-based disks, etc.). Generally, for applications such as databases,
block-based disks are preferable because they generally offer better
performance, but if performance is less of a consideration, file-based disks can
sometimes offer greater flexibility.

NOTE

Managing state in general is complicated, and Kubernetes is no exception. If you are running
in an environment that supports stateful services (e.g., MySQL as a service, Redis as a
service), it is generally a good idea to use those stateful services. Initially, the cost premium of
a stateful Software as a Service (SaaS) might seem expensive, but when you factor in all the
operational requirements of state (backup, data locality, redundancy, etc.), and the fact that the
presence of state in a Kubernetes cluster makes it difficult to move applications between
clusters, it becomes clear that, in most cases, storage SaaS is worth the price premium. In on-
premises environments where storage SaaS isn’t available, having a dedicated team provide
storage as a service to the entire organization is definitely a better practice than allowing each
team to roll its own.

To deploy our Redis service, we use a StatefulSet resource. Added after the
initial Kubernetes release as a complement to ReplicaSet resources, a StatefulSet
gives slightly stronger guarantees such as consistent names (no random hashes!)
and a defined order for scale-up and scale-down. When you are deploying a
singleton, this is somewhat less important, but when you want to deploy
replicated state, these attributes are very convenient.

To obtain a PersistentVolume for our Redis, we use a PersistentVolumeClaim.
You can think of a claim as a “request for resources.” Our Redis declares
abstractly that it wants 50 GB of storage, and the Kubernetes cluster determines
how to provision an appropriate PersistentVolume. There are two reasons for
this. The first is so that we can write a StatefulSet that is portable between

different clouds and on-premises, where the details of disks might be different.
The other reason is that although many PersistentVolume types can be mounted
to only a single pod, we can use volume claims to write a template that can be
replicated and yet have each pod assigned its own specific PersistentVolume.

The following example shows a Redis StatefulSet with PersistentVolumes:

apiVersion: apps/vi
kind: StatefulSet
metadata:
name: redis
spec:
serviceName: "redis"
replicas: 1
selector:
matchLabels:
app: redis
template:
metadata:
labels:
app: redis
spec:
containers:
- name: redis
image: redis:5-alpine
ports:
- containerPort: 6379
name: redis
volumeMounts:
- name: data
mountPath: /data
volumeClaimTemplates:
- metadata:
name: data
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 10Gi

This deploys a single instance of your Redis service, but suppose you want to
replicate the Redis cluster for scale-out of reads and resiliency to failures. To do
this you need to obviously increase the number of replicas to three, but you also
need to ensure that the two new replicas connect to the write master for Redis.

When you create the headless Service for the Redis StatefulSet, it creates a DNS

entry redis-0.redtis; this is the IP address of the first replica. You can use this
to create a simple script that can launch in all of the containters:

#!/bin/bash

PASSWORD=S$(cat /etc/redis-passwd/passwd)

if [["${HOSTNAME}" == "redis-0"]]; then
redis-server --requirepass ${PASSWORD}
else
redis-server --slaveof redis-0.redis 6379 --masterauth ${PASSWORD} --requirepass
${PASSWORD}
fi

You can create this script as a ConfigMap:
kubectl create configmap redis-config --from-file=1launch.sh=1aunch.sh

You then add this ConfigMap to your StatefulSet and use it as the command for
the container. Let’s also add in the password for authentication that we created
earlier in the chapter.

The complete three-replica Redis looks as follows:

apiVersion: apps/vi
kind: StatefulSet
metadata:
name: redis
spec:
serviceName: "redis"
replicas: 3
selector:
matchLabels:
app: redis
template:
metadata:

labels:
app: redis

spec:

containers:

- name: redis
image: redis:5-alpine
ports:

- containerPort: 6379
name: redis

volumeMounts:
- name: data
mountPath: /data
- name: script
mountPath: /script/launch.sh
subPath: launch.sh
- name: passwd-volume
mountPath: /etc/redis-passwd
command:
- sh
- -C
- /[script/launch.sh
volumes:
- name: script
configMap:
name: redis-config
defaultMode: 0777
- name: passwd-volume
secret:
secretName: redis-passwd
volumeClaimTemplates:
- metadata:
name: data
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 10Gi

Creating a TCP Load Balancer by Using Services

Now that we’ve deployed the stateful Redis service, we need to make it available
to our frontend. To do this, we create two different Kubernetes Services. The
first is the Service for reading data from Redis. Because Redis is replicating the
data to all three members of the StatefulSet, we don’t care which read our
request goes to. Consequently, we use a basic Service for the reads:

apiVersion: vi
kind: Service
metadata:

labels:

app: redis

name: redis

namespace: default
spec:

ports:

- port: 6379
protocol: TCP
targetPort: 6379

selector:
app: redis

sessionAffinity: None
type: ClusterIP

To enable writes, you need to target the Redis master (replica #0). To do this,
create a headless Service. A headless Service doesn’t have a cluster IP address;
instead, it programs a DNS entry for every pod in the StatefulSet. This means

that we can access our master via the redis-0.redis DNS name:

apiVersion: vi
kind: Service
metadata:
labels:
app: redis-write
name: redis-write
spec:
clusterIP: None
ports:
- port: 6379
selector:
app: redis

Thus, when we want to connect to Redis for writes or transactional read/write

pairs, we can build a separate write client connected to the redis-0.redis
server.

Using Ingress to Route Traffic to a Static File
Server

The final component in our application is a static file server. The static file
server is responsible for serving HTML, CSS, JavaScript, and image files. It’s
both more efficient and more focused for us to separate static file serving from
our API serving frontend described earlier. We can easily use a high-
performance static off-the-shelf file server like NGINX to serve files while we
allow our development teams to focus on the code needed to implement our API.

Fortunately, the Ingress resource makes this source of mini-microservice

architecture very easy. Just like the frontend, we can use a Deployment resource
to describe a replicated NGINX server. Let’s build the static images into the
NGINX container and deploy them to each replica. The Deployment resource
looks as follows:

apiVersion: extensions/vibetal
kind: Deployment
metadata:
labels:
app: fileserver
name: fileserver
namespace: default
spec:
replicas: 2
selector:
matchLabels:

app: fileserver

template:
metadata:

labels:
app: fileserver

spec:

containers:

- image: my-repo/static-files:vi-abcde
imagePullPolicy: Always
name: fileserver
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
resources:

request:
cpu: "1.0"
memory: "1G"
limits:
cpu: "1.0"
memory: "1G"
dnsPolicy: ClusterFirst
restartPolicy: Always

Now that there is a replicated static web server up and running, you will likewise
create a Service resource to act as a load balancer:

apiVersion: vi
kind: Service
metadata:
labels:
app: frontend

name: frontend

namespace: default

spec:

ports:

- port: 80
protocol: TCP
targetPort: 80

selector:
app: frontend

sessionAffinity: None
type: ClusterIP

Now that you have a Service for your static file server, extend the Ingress
resource to contain the new path. It’s important to note that you must place the /
path after the /api path, or else it would subsume /api and direct API requests
to the static file server. The new Ingress looks like this:

apiVersion: extensions/vibetal
kind: Ingress
metadata:
name: frontend-ingress
spec:
rules:
- http:
paths:
- path: /api
backend:
serviceName: frontend
servicePort: 8080
NOTE: this should come after /api or else it will hijack requests
- path: /
backend:
serviceName: nginx
servicePort: 80

Parameterizing Your Application by Using Helm

Everything that we have discussed so far focuses on deploying a single instance
of our service to a single cluster. However, in reality, nearly every service and
every service team is going to need to deploy to multiple different environments
(even if they share a cluster). Even if you are a single developer working on a
single application, you likely want to have at least a development version and a
production version of your application so that you can iterate and develop

without breaking production users. After you factor in integration testing and
CI/CD, it’s likely that even with a single service and a handful of developers,
you’ll want to deploy to at least three different environments, and possibly more
if you consider handling datacenter-level failures.

An initial failure mode for many teams is to simply copy the files from one
cluster to another. Instead of having a single frontend/ directory, have a frontend-
production/ and frontend-development/ pair of directories. The reason this is so
dangerous is because you are now in charge of ensuring that these files remain
synchronized with one another. If they were intended to be entirely identical, this
might be easy, but some skew between development and production is expected
because you will be developing new features; it’s critical that the skew is both
intentional, and easily managed.

Another option to achieve this would be to use branches and version control,
with the production and development branches leading off from a central
repository, and the differences between the branches clearly visible. This can be
a viable option for some teams, but the mechanics of moving between branches
are challenging when you want to simultaneously deploy software to different
environments (e.g., a CI/CD system that deploys to a number of different cloud
regions).

Consequently, most people end up with a templating system. A templating
system combines templates, which form the centralized backbone of the
application configuration, with parameters that specialize the template to a
specific environment configuration. In this way, you can have a generally shared
configuration, with intentional (and easily understood) customization as needed.
There are a variety of different template systems for Kubernetes, but the most
popular by far is a system called Helm.

In Helm, an application is packaged in a collection of files called a chart
(nautical jokes abound in the world of containers and Kubernetes).

A chart begins with a chart.yaml file, which defines the metadata for the chart
itself:

apiVersion: vi

appVersion: "1.0"

description: A Helm chart for our frontend journal server.
name: frontend

https://helm.sh

version: 0.1.0

This file is placed in the root of the chart directory (e.g., frontend/). Within this
directory, there is a templates directory, which is where the templates are placed.
A template is basically a YAML file from the previous examples, with some of
the values in the file replaced with parameter references. For example, imagine
that you want to parameterize the number of replicas in your frontend.
Previously, here’s what the Deployment had:

spec:
replicas: 2

In the template file (frontend-deployment.tmpl), it instead looks like the
following:

spec:
replicas: {{ .replicaCount }}

This means that when you deploy the chart, you’ll substitute the value for
replicas with the appropriate parameter. The parameters themselves are defined
in a values.yaml file. There will be one values file per environment where the
application should be deployed. The values file for this simple chart would look
like this:

replicaCount: 2

Putting this all together, you can deploy this chart using the he'lm tool, as
follows:

helm install path/to/chart --values path/to/environment/values.yaml

This parameterizes your application and deploys it to Kubernetes. Over time
these parameterizations will grow to encompass the variety of different
environments for your application.

Deploying Services Best Practices

Kubernetes is a powerful system that can seem complex. But setting up a basic
application for success can be straightforward if you use the following best
practices:

e Most services should be deployed as Deployment resources.
Deployments create identical replicas for redundancy and scale.

e Deployments can be exposed using a Service, which is effectively a
load balancer. A Service can be exposed either within a cluster (the
default) or externally. If you want to expose an HTTP application, you
can use an Ingress controller to add things like request routing and SSL.

e Eventually you will want to parameterize your application to make its
configuration more reusable in different environments. Packaging tools
like Helm are the best choice for this kind of parameterization.

Summary

The application built in this chapter is a simple one, but it contains nearly all of
the concepts you’ll need to build larger, more complicated applications.
Understanding how the pieces fit together and how to use foundational
Kubernetes components is key to successfully working with Kubernetes.

Laying the correct foundation via version control, code review, and continuous
delivery of your service ensures that no matter what you build, it is built in a
solid manner. As we go through the more advanced topics in subsequent
chapters, keep this foundational information in mind.

https://helm.sh

Chapter 2. Developer Workflows

Kubernetes was built for reliably operating software. It simplifies deploying and
managing applications with an application-oriented API, self-healing properties,
and useful tools like Deployments for zero downtime rollout of software.
Although all of these tools are useful, they don’t do much to make it easier to
develop applications for Kubernetes. Furthermore, even though many clusters
are designed to run production applications and thus are rarely accessed by
developer workflows, it is also critical to enable development workflows to
target Kubernetes, and this typically means having a cluster or at least part of a
cluster that is intended for development. Setting up such a cluster to facilitate
easy development of applications for Kubernetes is a critical part of ensuring
success with Kubernetes. Clearly if there is no code being built for your cluster,
the cluster itself isn’t accomplishing much.

Goals

Before we describe the best practices for building out development clusters, it is
worth stating our goals for such clusters. Obviously, the ultimate goal is to
enable developers to rapidly and easily build applications on Kubernetes, but
what does that really mean in practice and how is that reflected in practical
features of the development cluster?

It is useful to identify phases of developer interaction with the cluster.

The first phase is onboarding. This is when a new developer joins the team. This
phase includes giving the user a login to the cluster as well as getting them
oriented to their first deployment. The goal for this phase is to get a developer’s
feet wet in a minimal amount of time. You should set a key performance
indicator (KPI) goal for this process. A reasonable goal would be that a user
could go from nothing to the current application at HEAD running in less than
half an hour. Every time someone is new to the team, test how you are doing
against this goal.

The second phase is developing. This is the day-to-day activities of the

developer. The goal for this phase is to ensure rapid iteration and debugging.
Developers need to quickly and repeatedly push code to the cluster. They also
need to be able to easily test their code and debug it when it isn’t operating
properly. The KPI for this phase is more challenging to measure, but you can
estimate it by measuring the time to get a pull request (PR) or change up and
running in the cluster, or with surveys of the user’s perceived productivity, or
both. You will also be able to measure this in the overall productivity of your
teams.

The third phase is testing. This phase is interleaved with developing and is used
to validate the code before submission and merging. The goals for this phase are
two-fold. First, the developer should be able to run all tests for their environment
before a PR is submitted. Second, all tests should automatically run before code
is merged into the repository. In addition to these goals you should also set a KPI
for the length of time the tests take to run. As your project becomes more
complex, it’s natural for more and more tests to take a longer time. As this
happens, it might become valuable to identify a smaller set of smoke tests that a
developer can use for initial validation before submitting a PR. You should also
have a very strict KPI around test flakiness. A flaky test is one that occasionally
(or not so occasionally) fails. In any reasonably active project, a flakiness rate of
more than one failure per one thousand runs will lead to developer friction. You
need to ensure that your cluster environment does not lead to flaky tests.
Whereas sometimes flaky tests occur due to problems in the code, they can also
occur because of interference in the development environment (e.g., running out
of resources and noisy neighbors). You should ensure that your development
environment is free of such issues by measuring test flakiness and acting quickly
to fix it.

Building a Development Cluster

When people begin to think about developing on Kubernetes, one of the first
choices that occurs is whether to build a single large development cluster or to
have one cluster per developer. Note that this choice only makes sense in an
environment in which dynamic cluster creation is easy, such as the public cloud.
In physical environments, its possible that one large cluster is the only choice.

If you do have a choice you should consider the pros and cons of each option. If
you choose to have a development cluster per user, the significant downside of
this approach is that it will be more expensive and less efficient, and you will
have a large number of different development clusters to manage. The extra
costs come from the fact that each cluster is likely to be heavily underutilized.
Also, with developers creating different clusters, it becomes more difficult to
track and garbage-collect resources that are no longer in use. The advantage of
the cluster-per-user approach is simplicity: each developer can self-service
manage their own cluster, and from isolation, it’s much more difficult for
different developers to step on one another’s toes.

On the other hand, a single development cluster will be significantly more
efficient; you can likely sustain the same number of developers on a shared
cluster for one-third the price (or less). Plus, it’s much easier for you to install
shared cluster services, for example, monitoring and logging, which makes it
significantly easier to produce a developer-friendly cluster. The downside of a
shared development cluster is the process of user management and potential
interference between developers. Because the process of adding new users and
namespaces to the Kubernetes cluster isn’t currently streamlined, you will need
to activate a process to onboard new developers. Although Kubernetes resource
management and Role-Based Access Control (RBAC) can reduce the probability
that two developers conflict, it is always possible that a user will brick the
development cluster by consuming too many resources so that other applications
and developers won’t schedule. Additionally, you will still need to ensure that
developers don’t leak and forget about resources they’ve created. This is
somewhat easier, though, than the approach in which developers each create
their own clusters.

Even though both approaches are feasible, generally, our recommendation is to
have a single large cluster for all developers. Although there are challenges in
interference between developers, they can be managed and ultimately the cost
efficiency and ability to easily add organization-wide capabilities to the cluster
outweigh the risks of interference. But you will need to invest in a process for
onboarding developers, resource management, and garbage collection. Our
recommendation would be to try a single large cluster as a first option. As your
organization grows (or if it is already large), you might consider having a cluster
per team or group (10 to 20 people) rather than a giant cluster for hundreds of

users. This can make both billing and management easier.

Setting Up a Shared Cluster for Multiple
Developers

When setting up a large cluster, the primary goal is to ensure that multiple users
can simultaneously use the cluster without stepping on one another’s toes. The
obvious way to separate your different developers is with Kubernetes
namespaces. Namespaces can serve as scopes for the deployment of services so
that one user’s frontend service doesn’t interfere with another user’s frontend
service. Namespaces are also scopes for RBAC, ensuring that one developer
cannot accidentally delete another developer’s work. Thus, in a shared cluster it
makes sense to use a namespace as a developer’s workspace. The processes for
onboarding users and creating and securing a namespace are described in the
following sections.

Onboarding Users

Before you can assign a user to a namespace, you have to onboard that user to
the Kubernetes cluster itself. To achieve this, there are two options. You can use
certificate-based authentication to create a new certificate for the user and give
them a kubeconfig file that they can use to log in, or you can configure your
cluster to use an external identity system (for example, Microsoft Azure Active
Directory or AWS Identity and Access Management [IAM]) for cluster access.

In general, using an external identity system is a best practice because it doesn’t
require that you maintain two different sources of identity, but in some cases this
isn’t possible and you need to use certificates. Fortunately, you can use the
Kubernetes certificate API for creating and managing such certificates. Here’s
the process for adding a new user to an existing cluster.

First, you need to generate a certificate signing request to generate a new
certificate. Here is a simple Go program to do this:
package main

import (
"crypto/rand"

"crypto/rsa"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/pem"

0s

)

func main() {
name :
user :

os.Args[1]
0s.Args[2]

key, err := rsa.GenerateKey(rand.Reader, 1024)
if err != nil {

panic(err)
}
keyDer := x509.MarshalPKCS1PrivateKey(key)
keyBlock := pem.Block{

Type: "RSA PRIVATE KEY",

Bytes: keyDer,

}
keyFile, err := os.Create(name + "-key.pem")
if err != nil {
panic(err)
}

pem.Encode(keyFile, &keyBlock)
keyFile.Close()

commonName := user

// You may want to update these too
emailAddress := "someone@myco.com"
org := "My Co, Inc."
orguUnit := "Widget Farmers"
city := "Seattle"

state := "WA"

country := "US"

subject := pkix.Name{

CommonName: commonName,
Country: []string{country},
Locality: [Jstring{city},
Organization: [Jstring{org},
OrganizationalUnit: []string{orgunit},
Province: []string{state},

asnl, err := asnl.Marshal(subject.ToRDNSequence())
if err != nil {

panic(err)

}
csr := x509.CertificateRequest{
RawSubject: asni,
EmailAddresses: []string{emailAddress},
SignatureAlgorithm: x509.SHA256WithRSA,
}
bytes, err := x509.CreateCertificateRequest(rand.Reader, &csr, key)
if err != nil {
panic(err)
}
csrFile, err := os.Create(name + ".csr"
if err != nil {
panic(err)
}

pem.Encode(csrFile, &pem.Block{Type: "CERTIFICATE REQUEST", Bytes: bytes})
csrFile.Close()

You can run this as follows:

go run csr-gen.go client <user-name>

This creates files called client-key.pem and client.csr. You then can run the
following script to create and download a new certificate:

#!/bin/bash

csr_name="my-client-csr"
name="${1:-my-user}"

csr="${2}"

cat <<EOF | kubectl create -f -
apiVersion: certificates.k8s.io/vlbetal
kind: CertificateSigningRequest
metadata:

name: ${csr_name}

spec:

groups:
- system:authenticated

request: $(cat ${csr} | base64 | tr -d '\n')
usages:

- digital signature

- key encipherment
- client auth
EOF

echo
echo "Approving signing request."
kubectl certificate approve ${csr_name}

echo

echo "Downloading certificate."

kubectl get csr ${csr_name} -o jsonpath='{.status.certificate}' \
| base64 --decode > S(basename ${csr} .csr).crt

echo
echo "Cleaning up"
kubectl delete csr ${csr_name}

echo
echo "Add the following to the 'users' list in your kubeconfig file:"

echo "- name: ${name}"

echo " user:"

echo " client-certificate: ${PWD}/$(basename ${csr} .csr).crt"
echo " client-key: ${PWD}/$(basename S${csr} .csr)-key.pem"
echo

echo "Next you may want to add a role-binding for this user."

This script prints out the final information that you can add to a kubeconfig file
to enable that user. Of course, the user has no access privileges, so you will need
to apply Kubernetes RBAC for the user in order to grant them privileges to a
namespace.

Creating and Securing a Namespace

The first step in provisioning a namespace is actually just creating it. You can do
this using kubectl create namespace my-namespace.

But the truth is that when you create a namespace, you want to attach a bunch of
metadata to that namespace, for example, the contact information for the team
that builds the component deployed into the namespace. Generally, this is in the
form of annotations; you can either generate the YAML file using some
templating, such as Jinja or others, or you can create and then annotate the
namespace. A simple script to do this looks like:

ns='my-namespace'

https://oreil.ly/vvtTF

kubectl create namespace ${ns}
kubectl annotate namespace ${ns} annotation_key=annotation_value

When the namespace is created, you want to secure it by ensuring that you can
grant access to the namespace to a specific user. To do this, you can bind a role
to a user in the context of that namespace. You do this by creating a

RoleBinding object within the namespace itself. The RoleBinding might look
like this:

apiVersion: rbac.authorization.k8s.io0/v1
kind: RoleBinding
metadata:
name: example
namespace: my-namespace
roleRef:
apiGroup: rbac.authorization.k8s.1o
kind: ClusterRole
name: edit
subjects:
- apiGroup: rbac.authorization.k8s.i0
kind: User
name: myuser

To create it, you simply run kubectl create -f role-binding.yaml. Note
that you can reuse this binding as much as you want so long as you update the
namespace in the binding to point to the correct namespace. If you ensure that
the user doesn’t have any other role bindings, you can be assured that this
namespace is the only part of the cluster to which the user has access. A
reasonable practice is to also grant reader access to the entire cluster; in this way
developers can see what others are doing in case it is interfering with their work.
Be careful in granting such read access, however, because it will include access
to secret resources in the cluster. Generally, in a development cluster this is OK
because everyone is in the same organization and the secrets are used only for
development; however, if this is a concern, then you can create a more fine-
grained role that eliminates the ability to read secrets.

If you want to limit the amount of resources consumed by a particular
namespace, you can use the ResourceQuota resource to set a limit to the total
number of resources that any particular namespace consumes. For example, the
following quota limits the namespace to 10 cores and 100 GB of memory for

both Request and Limit for the pods in the namespace:

apiVersion: vi
kind: ResourceQuota
metadata:
name: limit-compute
namespace: my-namespace
spec:
hard:
requests.cpu: "10"
requests.memory: 100Gi
limits.cpu: "10"
limits.memory: 100Gi

Managing Namespaces

Now that you have seen how to onboard a new user and how to create a
namespace to use as a workspace, the question remains how to assign a
developer to the namespace. As with many things, there is no single perfect
answer; rather, there are two approaches. The first is to give each user their own
namespace as part of the onboarding process. This is useful because after a user
is onboarded, they always have a dedicated workspace in which they can
develop and manage their applications. However, making the developer’s
namespace too persistent encourages the developer to leave things lying around
in the namespace after they are done with them, and garbage-collecting and
accounting individual resources is more complicated. An alternate approach is to
temporarily create and assign a namespace with a bounded time to live (TTL).
This ensures that the developer thinks of the resources in the cluster as transient
and that it is easy to build automation around the deletion of entire namespaces
when their TTL has expired.

In this model, when the developer wants to begin a new project, they use a tool
to allocate a new namespace for the project. When they create the namespace, it
has a selection of metadata associated with the namespace for management and
accounting. Obviously, this metadata includes the TTL for the namespace, but it
also includes the developer to which it is assigned, the resources that should be
allocated to the namespace (e.g., CPU and memory), and the team and purpose
of the namespace. This metadata ensures that you can both track resource usage
and delete the namespace at the right time.

Developing the tooling to allocate namespaces on demand can seem like a
challenge, but simple tooling is relatively simple to develop. For example, you
can achieve the allocation of a new namespace with a simple script that creates
the namespace and prompts for the relevant metadata to attach to the namespace.

If you want to get more integrated with Kubernetes, you can use custom resource
definitions (CRDs) to enable users to dynamically create and allocate new
namespaces using the kubectl tool. If you have the time and inclination, this is
definitely a good practice because it makes namespace management declarative
and also enables the use of Kubernetes RBAC.

After you have tooling to enable the allocation of namespaces, you also need to
add tooling to reap namespaces when their TTL has expired. Again, you can
accomplish this with a simple script that examines the namespaces and deletes
those that have an expired TTL.

You can build this script into a container and use a ScheduledJob to run it at an
interval like once per hour. Combined together, these tools can ensure that
developers can easily allocate independent resources for their project as needed,
but those resources will also be reaped at the proper interval to ensure that you
don’t have wasted resources and that old resources don’t get in the way of new
development.

Cluster-Level Services

In addition to tooling to allocate and manage namespaces, there are also useful
cluster-level services, and it’s a good idea to enable them in your development
cluster. The first is log aggregation to a central Logging as a Service (LaaS)
system. One of the easiest things for a developer to do to understand the
operation of their application is to write something to STDOUT. Although you
can access these logs via kubectl logs, that log is limited in length and is not
particularly searchable. If you instead automatically ship those logs to a LaaS
system such as a cloud service or an Elasticsearch cluster, developers can easily
search through logs for relevant information as well as aggregate logging
information across multiple containers in their service.

Enabling Developer Workflows

Now that we succesfully have a shared cluster setup and we can onboard new
application developers to the cluster itself, we need to actually get them
developing their application. Remember that one of the key KPIs that we are
measuring is the time from onboarding to an initial application running in the
cluster. It’s clear that via the just-described onboarding scripts we can quickly
authenticate a user to a cluster and allocate a namespace, but what about getting
started with the application? Unfortunately, even though there are a few
techniques that help with this process, it generally requires more convention than
automation to get the initial application up and running. In the following
sections, we describe one approach to achieving this; it is by no means the only
approach or the only solution. You can optionally apply the approach as is or be
inspired by the ideas to arrive at your own solution.

Initial Setup

One of the main challenges to deploying an application is the installation of all
of the dependencies. In many cases, especially in modern microservice
architectures, to even get started developing on one of the microservices requires
the deployment of multiple dependencies, either databases or other
microservices. Although the deployment of the application itself is relatively
straightforward, the task of identifying and deploying all of the dependencies to
build the complete application is often a frustrating case of trial and error
married with incomplete or out-of-date instructions.

To address this issue, it is often valuable to introduce a convention for describing
and installing dependencies. This can be seen as the equivalent of something like
npm install, which installs all of the required JavaScript dependencies.
Eventually, there is likely to be a tool similar to npm that provides this service for
Kubernetes-based applications, but until then, the best practice is to rely on
convention within your team.

One such option for a convention is the creation of a setup.sh script within the
root directory of all project repositories. The responsibility of this script is to
create all dependencies within a particular namespace to ensure that all of the
application’s dependencies are correctly created. For example, a setup script

might look like the following:

kubectl create my-service/database-stateful-set-yaml
kubectl create my-service/middle-tier.yaml
kubectl create my-service/configs.yaml

You then could integrate this script with npm by adding the following to your
package.json:

"scripts": {
"setup": "./setup.sh",

With this setup, a new developer can simply run npm run setup and the cluster
dependencies will be installed. Obviously, this particular integration is
Node.js/npm specific. In other programming languages, it will make more sense
to integrate with the language-specific tooling. For example, in Java you might
integrate with a Maven pom.xml file instead.

Enabling Active Development

Having set up the developer workspace with required dependencies, the next
task is to enable them to iterate on their application quickly. The first
prerequisite for this is the ability to build and push a container image. Let’s
assume that you have this already set up; if not, you can read how to do this in a
number of other online resources and books.

After you have built and pushed a container image, the task is to roll it out to the
cluster. Unlike traditional rollouts, in the case of developer iteration, maintaining
availability is really not a concern. Thus, the easiest way to deploy new code is
to simply delete the Deployment object associated with the previous Deployment
and then create a new Deployment pointing to the newly built image. It is also
possible to update an existing Deployment in place, but this will trigger the
rollout logic in the Deployment resource. Although it is possible to configure a

Deployment to roll out code quickly, doing so introduces a difference between
the development environment and the production environment that can be
dangerous or destabilizing. Imagine, for example, that you accidentally push the
development configuration of the Deployment into production; you will
suddenly and accidentally deploy new versions to production without
appropriate testing and delays between phases of the rollout. Because of this risk
and because there is an alternative, the best practice is to delete and re-create the
Deployment.

Just like installing dependencies, it is also a good practice to make a script for
performing this deployment. An example deploy.sh script might look like the
following:

kubectl delete -f ./my-service/deployment.yaml
perl -pi -e 's/${old_version}/${new_version}/' ./my-service/deployment.yaml
kubectl create -f ./my-service/deployment.yaml

As before, you can integrate this with existing programming language tooling so
that (for example) a developer can simply run npm run deploy to deploy their
new code into the cluster.

Enabling Testing and Debugging

After a user has successfully deployed their development version of their
application, they need to test it and, if there are problems, debug any issues with
the application. This can also be a hurdle when developing in Kubernetes
because it is not always clear how to interact with your cluster. The kubectl
command line is a veritable Swiss army knife of tools to achieve this, from
kubectl logs to kubectl exec and kubectl port-forward, but learning how
to use all of the different options and achieving familiarity with the tool can take
a considerable amount of experience. Furthermore, because the tool runs in the
terminal, it often requires the composition of multiple windows to
simultaneously examine both the source code for the application and the running
application itself.

To streamline the testing and debugging experience, Kubernetes tooling is
increasingly being integrated into development environments, for example, the

open source extension for Visual Studio (VS) Code for Kubernetes. The
extension is easily installed for free from the VS Code marketplace. When
installed, it automatically discovers any clusters that you already have in your
kubeconfig file, and it provides a tree-view navigation pane for you to see the
contents of your cluster at a glance.

In addition to being able to see your cluster state at a glance, the integration
allows a developer to use the tools available via kubectl in an intuitive,
discoverable way. From the tree view, if you right-click a Kubernetes pod, you
can immediately use port forwarding to bring a network connection to the pod
directly to the local machine. Likewise, you can access the logs for the pod or
even get a terminal within the running container.

The integration of these commands with prototypical user interface expectations
(e.g., right-click shows a context menu), as well as the integration of these
experiences alongside the code for the application itself, enable developers with
minimal Kubernetes experience to rapidly become productive in the
development cluster.

Of course this VS Code extension isn’t the only integration between Kubernetes
and a devlopment environment; there are several others that you can install
depending on your choice of programming environment and style (vi, emacs,
etc.).

Setting Up a Development Environment Best
Practices

Setting up successful workflows on Kubernetes is key to productivity and
happiness. Following these best practices will help to ensure that developers are
up and running quickly:

e Think about developer experience in three phases: onboarding,
developing, and testing. Make sure that the development environment
you build supports all three of these phases.

e When building a development cluster, you can choose between one
large cluster and a cluster per developer. There are pros and cons to

each, but generally a single large cluster is a better approach.

¢ When you add users to a cluster, add them with their own identity and
access to their own namespace. Use resource limits to restrict how much
of the cluster they can use.

¢ When managing namespaces, think about how you can reap old, unused
resources. Developers will have bad hygiene about deleting unused
things. Use automation to clean it up for them.

e Think about cluster-level services like logs and monitoring that you can
set up for all users. Sometimes, cluster-level dependencies like
databases are also useful to set up on behalf of all users using templates
like Helm charts.

Summary

We’ve reached a place where creating a Kubernetes cluster, especially in the
cloud, is a relatively straightforward exercise, but enabling developers to
productively use such a cluster is significantly less obvious and easy. When
thinking about enabling developers to successfully build applications on
Kubernetes, it’s important to think about the key goals around onboarding,
iterating, testing, and debugging applications. Likewise, it pays to invest in some
basic tooling specific to user onboarding, namespace provisioning, and cluster
services like basic log aggregation. Viewing a development cluster and your
code repositories as an opportunity to standardize and apply best practices will
ensure that you have happy and productive developers, successfully building
code to deploy to your production Kubernetes clusters.

Chapter 3. Monitoring and
Logging in Kubernetes

In this chapter, we discuss best practices for monitoring and logging in
Kubernetes. We’ll dive into the details of different monitoring patterns,
important metrics to collect, and building dashboards from these raw metrics.
We then wrap up with examples of implementing monitoring for your
Kubernetes cluster.

Metrics Versus Logs

You first need to understand the difference between log collection and metrics
collection. They are complementary to each other but serve different purposes.

Metrics

A series of numbers measured over a period of time

Logs
Used for exploratory analysis of a system

An example of where you would need to use both metrics and logging is when
an application is performing poorly. Our first indication of the issue might be an
alert of high latency on the pods hosting the application, but the metrics might
not give a good indication of the issue. We then can look into our logs to perform
an investigation of errors that are being emitted from the application.

Monitoring Techniques

Black-box monitoring focuses on monitoring from the outside of an application
and is what’s been used traditionally when monitoring systems for components
like CPU, memory, storage, and so on. Black-box monitoring can still be useful
for monitoring at the infrastructure level, but it lacks insights and context into

how the application is operating. For example, to test whether a cluster is
healthy, we might schedule a pod, and if it’s successful, we know that the
scheduler and service discovery are healthy within our cluster, so we can assume
the cluster components are healthy.

White-box monitoring focuses on the details in the context of the application
state, such as total HTTP requests, number of 500 errors, latency of requests, and
so on. With white-box monitoring, we can begin to understand the “Why” of our
system state. It allows us to ask, “Why did the disk fill up?” and not just, “The
disk filled up.”

Monitoring Patterns

You might look at monitoring and say, “How difficult can this be? We’ve always
monitored our systems.” Yes, some of your typical monitoring patterns in place
today also fit into how you monitor Kubernetes. The difference is that platforms
like Kubernetes are much more dynamic and transient, and you’ll need to change
your thinking about how to monitor these environments. For example, when
monitoring a virtual machine (VM) you expect that VM to be up 24/7 and all its
state preserved. In Kubernetes, pods can be very dynamic and short-lived, so you
need to have monitoring in place that can handle this dynamic and transient
nature.

There are a couple of different monitoring patterns to focus on when monitoring
distributed systems.

The USE method, popularized by Brendan Gregg, focuses on the following:
e U—Utilization
e S—Saturation

o FE—Frrors

This method is focused on infrastructure monitoring because there are
limitations on using it for application-level monitoring. The USE method is
described as, “For every resource, check utilization, saturation, and error rates.”
This method lets you quickly identify resource constraints and error rates of your
systems. For example, to check the health of the network for your nodes in the

cluster, you will want to monitor the utilization, saturation, and error rate to be
able to easily identify any network bottlenecks or errors in the network stack.
The USE method is a tool in a larger toolbox and is not the only method you will
utilize to monitor your systems.

Another monitoring approach, called the RED method, was popularized by Tom
Willke. The RED method approach is focused on the following:

e R—Rate
e E—FErrors
¢ D—Duration
The philosophy was taken from Google’s Four Golden Signals:
e Latency (how long it takes to serve a request)
e Traffic (how much demand is placed on your system)
e Errors (rate of requests that are failing)
e Saturation (how utilized your service is)

As an example, you could use this method to monitor a frontend service running
in Kubernetes to calculate the following:

e How many requests is my frontend service processing?
e How many 500 errors are users of the service receiving?
¢ s the service overutilized by requests?

As you can see from the previous example, this method is more focused on the
experience of the users and their experience with the service.

The USE and RED methods are complementary to each other given that the USE
method focuses on the infrastructure components and the RED method focuses
on monitoring the end-user experience for the application.

Kubernetes Metrics Overview

Now that we know the different monitoring techniques and patterns, let’s look at
what components you should be monitoring in your Kubernetes cluster. A
Kubernetes cluster consists of control-plane components and worker-node
components. The control-plane components consist of the API Server, etcd,
scheduler, and controller manager. The worker nodes consist of the kubelet,
container runtime, kube-proxy, kube-dns, and pods. You need to monitor all
these components to ensure a healthy cluster and application.

Kubernetes exposes these metrics in a variety of ways, so let’s take a look at
different components that you can use to collect metrics within your cluster.

cAdvisor

Container Advisor, or cAdvisor, is an open source project that collects resources
and metrics for containers running on a node. cAdvisor is built into the
Kubernetes kubelet, which runs on every node in the cluster. It collects memory
and CPU metrics through the Linux control group (cgroup) tree. If you are not
familiar with cgroups, it’s a Linux kernel feature that allows isolation of
resources for CPU, disk I/O, or network I/O. cAdvisor will also collect disk
metrics through statfs, which is built into the Linux kernel. These are
implementation details you don’t really need to worry about, but you should
understand how these metrics are exposed and the type of information you can
collect. You should consider cAdvisor as the source of truth for all container
metrics.

Metrics Server

The Kubernetes metrics server and Metrics Server API are a replacement for the
deprecated Heapster. Heapster had some architectural disadvantages with how it
implemented the data sink, which caused a lot of vendored solutions in the core
Heapster code base. This issue was solved by implementing a resource and
Custom Metrics API as an aggregated API in Kubernetes. This allows
implementations to be switched out without changing the API.

There are two aspects to understand in the Metrics Server API and metrics
server.

First, the canonical implementation of the Resource Metrics API is the metrics

server. The metrics server gathers resource metrics such as CPU and memory. It
gathers these metrics from the kubelet’s API and then stores them in memory.
Kubernetes uses these resource metrics in the scheduler, Horizontal Pod
Autoscaler (HPA), and Vertical Pod Autoscaler (VPA).

Second, the Custom Metrics API allows monitoring systems to collect arbitrary
metrics. This allows monitoring solutions to build custom adapters that will
allow for extending outside the core resource metrics. For example, Prometheus
built one of the first custom metrics adapters, which allows you to use the HPA
based on a custom metric. This opens up better scaling based on your use case
because now you can bring in metrics like queue size and scale based on a
metric that might be external to Kubernetes.

Now that there is a standardized Metrics API, this opens up many possibilities to
scale outside the plain old CPU and memory metrics.

kube-state-metrics

kube-state-metrics is a Kubernetes add-on that monitors the object stored in
Kubernetes. Where cAdvisor and metrics server are used to provide detailed
metrics on resource usage, kube-state-metrics is focused on identifying
conditions on Kubernetes objects deployed to your cluster.

Following are some questions that kube-state-metrics can answer for you:

e Pods
» How many pods are deployed to the cluster?
» How many pods are in a pending state?
m Are there enough resources to serve a pods request?

¢ Deployments
» How many pods are in a running state versus a desired state?
» How many replicas are available?
» What deployments have been updated?

e Nodes

m What’s the status of my worker nodes?
m What are the allottable CPU cores in my cluster?
m Are there any nodes that are unschedulable?

e Jobs

m» When did a job start?
» When did a job complete?
= How many jobs failed?

As of this writing, there are 22 object types that kube-state-metrics tracks. These
are always expanding, and you can find the documentation in the Github
repository.

What Metrics Do | Monitor?

The easy answer is “Everything,” but if you try to monitor too much, you can
create too much noise that filters out the real signals into which you need to have
insight. When we think about monitoring in Kubernetes, we want to take a
layered approach that takes into account the following;:

e Physical or virtual nodes
e Cluster components

e Cluster add-ons

e End-user applications

Using this layered approach to monitoring allows you to more easily identify the
correct signals in your monitoring system. It allows you to approach issues with
a more targeted approach. For example, if you have pods going into a pending
state, you can start with resource utilization of the nodes, and if all is OK, you
can target cluster-level components.

Following are metrics you would want to target in your system:

e Nodes

https://oreil.ly/bdTp2

m CPU utilization
m Memory utilization
» Network utilization

m Disk utilization
e Cluster components

m etcd latency
e Cluster add-ons

m Cluster Autoscaler
= Ingress controller
e Application
» Container memory utilization and saturation
m Container CPU utilization
» Container network utilization and error rate

m Application framework-specific metrics

Monitoring Tools

There are many monitoring tools that can integrate with Kubernetes, and more
arriving every day, building on their feature set to have better integration with
Kubernetes. Following are a few popular tools that integrate with Kubernetes:

Prometheus

Prometheus is an open source systems monitoring and alerting toolkit
originally built at SoundCloud. Since its inception in 2012, many companies
and organizations have adopted Prometheus, and the project has a very active
developer and user community. It is now a standalone open source project
and maintained independent of any company. To emphasize this, and to
clarify the project’s governance structure, Prometheus joined the Cloud

Native Computing Foundation (CNCF) in 2016 as the second hosted project,
after Kubernetes.

InfluxDB

InfluxDB is a time-series database designed to handle high write and query
loads. It is an integral component of the TICK (Telegraf, InfluxDB,
Chronograf, and Kapacitor) stack. InfluxDB is meant to be used as a backing
store for any use case involving large amounts of timestamped data,
including DevOps monitoring, application metrics, loT sensor data, and real-
time analytics.

Datadog

Datadog provides a monitoring service for cloud-scale applications,
providing monitoring of servers, databases, tools, and services through a
SaaS-based data analytics platform.

Sysdig

Sysdig Monitor is a commercial tool that provides Docker monitoring and
Kubernetes monitoring for container-native apps. Sysdig also allows you to
collect, correlate, and query Prometheus metrics with direct Kubernetes
integration.

Cloud provider tools
GCP Stackdriver

Stackdriver Kubernetes Engine Monitoring is designed to monitor
Google Kubernetes Engine (GKE) clusters. It manages monitoring and
logging services together and features an interface that provides a
dashboard customized for GKE clusters. Stackdriver Monitoring
provides visibility into the performance, uptime, and overall health of
cloud-powered applications. It collects metrics, events, and metadata
from Google Cloud Platform (GCP), Amazon Web Services (AWS),
hosted uptime probes, and application instrumentation.

Microsoft Azure Monitor for containers

Azure Monitor for containers is a feature designed to monitor the

performance of container workloads deployed to either Azure Container
Instances or managed Kubernetes clusters hosted on Azure Kubernetes
Service. Monitoring your containers is critical, especially when you’re
running a production cluster, at scale, with multiple applications. Azure
Monitor for containers gives you performance visibility by collecting
memory and processor metrics from controllers, nodes, and containers
that are available in Kubernetes through the Metrics API. Container logs
are also collected. After you enable monitoring from Kubernetes clusters,
metrics and logs are automatically collected for you through a
containerized version of the Log Analytics agent for Linux.

AWS Container Insights

If you use Amazon Elastic Container Service (ECS), Amazon Elastic
Kubernetes Service, or other Kubernetes platforms on Amazon EC2, you
can use CloudWatch Container Insights to collect, aggregate, and
summarize metrics and logs from your containerized applications and
microservices. The metrics include utilization for resources such as CPU,
memory, disk, and network. Container Insights also provides diagnostic
information, such as container restart failures, to help you isolate issues
and resolve them quickly.

One important aspect when looking at implementing a tool to monitor metrics is
to look at how the metrics are stored. Tools that provide a time-series database
with key/value pairs will give you a higher degree of attributes for the metric.

TIP

Always evaluate monitoring tools you already have, because taking on a new monitoring tool
has a learning curve and a cost due to the operational implementation of the tool. Many of the
monitoring tools now have integration into Kubernetes, so evaluate which ones you have today
and whether they will meet your requirements.

Monitoring Kubernetes Using Prometheus

In this section we focus on monitoring metrics with Prometheus, which provides
good integrations with Kubernetes labeling, service discovery, and metadata.

The high-level concepts we implement throughout the chapter will also apply to
other monitoring systems.

Prometheus is an open source project that is hosted by the CNCEF. It was
originally developed at SoundCloud, and a lot of its concepts are based on
Google’s internal monitoring system, BorgMon. It implements a
multidimensional data model with keypairs that work much like how the
Kubernetes labeling system works. Prometheus exposes metrics in a human-
readable format, as in the following example:

HELP node_cpu_seconds_total Seconds the CPU is spent in each mode.
TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="0",mode="1idle"} 5144.64
node_cpu_seconds_total{cpu="0",mode="1owalt"} 117.98

To collect metrics, Prometheus uses a pull model in which it scrapes a metrics
endpoint to collect and ingest the metrics into the Prometheus server. Systems
like Kubernetes already expose their metrics in a Prometheus format, making it
simple to collect metrics. Many other Kubernetes ecosystem projects (NGINX,
Traefik, Istio, LinkerD, etc.) also expose their metrics in a Prometheus format.
Prometheus also can use exporters, which allow you to take emitted metrics
from your service and translate them to Prometheus-formatted metrics.

Prometheus has a very simplified architecure, as depicted in Figure 3-1.

Kubernetes Clusters |« Pull Prometheus Server
IA:/ Push
Kubernetes Clusters us
Kubernetes Clusters AlertManager
v
Slack Pager Duty

Figure 3-1. Prometheus architecture

TIP

You can install Prometheus within the cluster or outside the cluster. It’s a good practice to
monitor your cluster from a “utility cluster” to avoid a production issue also affecting your
monitoring system. There are tools like Thanos that provide high availability for Prometheus
and allow you to export metrics into an external storage system.

A deep dive into the Prometheus architecture is beyond the scope of this book,
and you should refer to another one of the dedicated books on this topic.
Prometheus: Up & Running (O’Reilly) is a good in-depth book to get you
started.

So, let’s dive in and get Prometheus set up on our Kubernetes cluster. There are
many different ways to do this, and the deployment will depend on your specific
implementation. In this chapter we install the Prometheus Operator:

Prometheus Server

Pulls and stores metrics being collected from systems.

Prometheus Operator

Makes the Prometheus configuration Kubernetes native, and manages and

https://oreil.ly/7e6Wf
https://oreil.ly/NewNE

operates Prometheus and Alertmanager clusters. Allows you to create,
destroy, and configure Prometheus resources through native Kubernetes
resource definitions.

Node Exporter

Exports host metrics from Kubernetes nodes in the cluster.

kube-state-metrics

Collects Kubernetes-specific metrics.

Alertmanager

Allows you to configure and forward alerts to external systems.

Grafana

Provides visualization on dashboard capabilities for Prometheus.
helm install --name prom stable/prometheus-operator

After you’ve installed the Operator, you should see the following pods deployed
to your cluster:

$ kubectl get pods -n monitoring

NAME READY STATUS RESTARTS AGE

alertmanager-main-0 2/2 Running © 5h39m
alertmanager-main-1 2/2 Running © 5h39m
alertmanager-main-2 2/2 Running 0 5h38m
grafana-5d8f767-ct2ws 1/1 Running © 5h39m
kube-state-metrics-7fb8b47448-k6j6g 4/4 Running © 5h39m
node-exporter-5zkék 2/2 Running © 5h39m
node-exporter-874ss 2/2 Running © 5h39m
node-exporter-9mtgd 2/2 Running © 5h39m
node-exporter-wéexwt 2/2 Running © 5h39m
prometheus-adapter-66fc7797fd-ddgk5s 1/1 Running © 5h39m
prometheus-k8s-0 3/3 Running 1 5h39m
prometheus-k8s-1 3/3 Running 1 5h39m
prometheus-operator-7cb68545c6-gm84j 1/1 Running © 5h39m

Lets take a look at the Prometheus Server to see how you can run some queries
to retrieve Kubernetes metrics:

kubectl port-forward svc/prom-prometheus-operator-prometheus 9090

This creates a tunnel to our localhost on port 9090. Now, we can open a web
browser and connect to the Prometheus server on http://127.0.0.1:9090.

Figure 3-2 depicts the screen you’ll see if you successfully deployed Prometheus
to your cluster.

Now that we have Prometheus deployed, let’s explore some Kubernetes metrics
through the Prometheus PromQL query language. There is a PromQL Basics
guide available.

We talked earlier in the chapter about employing the USE method, so let’s gather
some node metrics on CPU utilization and saturation.

Status -

O Enable query history

Execute - insert metric at cursor - v

Graph Console

Element

no data

Figure 3-2. The Prometheus dashboard

In the Expression input, enter the following query:
avg(rate(node_cpu_seconds_total[5m]))

This will return the average CPU utilization for the entire cluster.

If we want to get the CPU utilization per node, we can write a query like the
following:

http://127.0.0.1:9090
https://oreil.ly/nGZYt

avg(rate(node_cpu_seconds_total[5m])) by (node_name)

This returns average CPU utilization for each node in the cluster.

So, now that you have some experience with running queries within Prometheus,
let’s take a look at how Grafana can help build dashboard visualization for these
common USE method metrics we want to track. The great thing about the
Prometheus Operator you installed is that it comes with some prebuilt Grafana
dashboards that you can use.

You’ll now need to create a port-forward tunnel to the Grafana pod so that you
can access it from your local machine:

kubectl port-forward svc/prom-grafana 3000:3000

Now, point your web browser at http://localhost:3000 and log in using the
following credentials:

e Username: admin

e Password: admin

Under the Grafana dashboard you’ll find a dashboard called Kubernetes / USE
Method / Cluster. This dashboard gives you a good overview of the utilization
and saturation of the Kubernetes cluster, which is at the heart of the USE
method. Figure 3-3 presents an example of the dashboard.

Figure 3-3. A Grafana dashboard

Go ahead and take some time to explore the different dashboards and metrics
that you can visualize in Grafana.

http://localhost:3000

TIP

Avoid creating too many dashboards (aka “The Wall of Graphs”) because this can be difficult
for engineers to reason with in troubleshooting situations. You might think having more
information in a dashboard means better monitoring, but the majority of the time it causes
more confusion for a user looking at the dashboard. Focus your dashboard design on outcomes
and time to resolution.

Logging Overview

Up to this point, we have discussed a lot about metrics and Kubernetes, but to
get the full picture of your environment, you also need to collect and centralize
logs from the Kubernetes cluster and the applications deployed to your cluster.

With logging, it might be easy to say, “Let’s just log everything,” but this can
cause two issues:

e There is too much noise to find issues quickly.
e Logs can consume a lot of resources and come with a high cost.

There is no clear-cut answer to what exactly you should log because debug logs
become a necessary evil. Over time you’ll start to understand your environment
better and learn what noise you can tune out from the logging system. Also, to
address the ever-increasing amount of logs stored, you will need to implement a
retention and archival policy. From an end-user experience, having somewhere
between 30 and 45 days worth of historical logs is a good fit. This allows for
investigation of problems that manifest over a longer period of time, but also
reduces the amount of resources needed to store logs. If you require longer-term
storage for compliance reasons, you’ll want to archive the logs to more cost-
effective resources.

In a Kubernetes cluster, there are multiple components to log. Following is a list
of components from which you should be collecting metrics:

e Node logs
e Kubernetes control-plane logs

m API server

m Controller manager
m Scheduler

e Kubernetes audit logs
e Application container logs

With node logs, you want to collect events that happen to essential node
services. For example, you will want to collect logs from the Docker daemon
running on the worker nodes. A healthy Docker daemon is essential for running
containers on the worker node. Collecting these logs will help you diagnose any
issues that you might run into with the Docker daemon, and it will give you
information into any underlying issues with the daemon. There are also other
essential services that you will want to log from the underlying node.

The Kubernetes control plane consists of several components from which you’ll
need to collect logs to give you more insight into underlying issues within it. The
Kubernetes control plane is core to a healthy cluster, and you’ll want to
aggregate the logs that it stores on the host in /var/log/kube-APIserver.log,
/var/log/kube-scheduler.log, and /var/log/kube-controller-manager.log. The
controller manager is responsible for creating objects defined by the end user. As
an example, as a user you create a Kubernetes service with type LoadBalancer
and it just sits in a pending state; the Kubernetes events might not give all the
details to diagnose the issue. If you collect the logs in a centralized system, it
will give you more detail into the underlying issue and a quicker way to
investigate the issue.

You can think of Kubernetes audit logs as security monitoring because they give
you insight into who did what within the system. These logs can be very noisy,
so you’ll want to tune them for your environment. In many instances these logs
can cause a huge spike in your logging system when first initialized, so make
sure that you follow the Kubernetes documentation guidance on audit log
monitoring.

Application container logs give you insight into the actual logs your application
is emitting. You can forward these logs to a central repository in multiple ways.
The first and recommended way is to send all application logs to STDOUT
because this gives you a uniform way of application logging, and a monitoring

daemon set can gather the logs directly from the Docker daemon. The other way
is to use a sidecar pattern and run a log forwarding container next to the
application container in a Kubernetes pod. You might need to use this pattern if
your application logs to the filesystem.

NOTE

There are many options and configurations for managing Kubernetes audit logs. These audit
logs can be very noisy and it can be expensive to log all actions. You should consider looking
at the audit logging documentation, so that you can fine-tune these logs for your environment.

Tools for Logging

Like collecting metrics there are numerous tools to collect logs from Kubernetes
and applications running in the cluster. You might already have tooling for this,
but be aware of how the tool implements logging. The tool should have the
capability to run as a Kubernetes DaemonSet and also have a solution to run as a
sidecar for applications that don’t send logs to STDOUT. Utilizing an existing
tool can be advantageous because you will already have a lot of operational
knowledge of the tool.

Some of the more popular tools with Kubernetes integration are:
e Elastic Stack
e Datadog
e Sumo Logic
e Sysdig

¢ Cloud provider services (GCP Stackdriver, Azure Monitor for
containers, and Amazon CloudWatch)

When looking for a tool to centralize logs, hosted solutions can provide a lot of
value because they offload a lot of the operational cost. Hosting your own
logging solution seems great on day N, but as the environment grows, it can be
very time consuming to maintain the solution.

https://oreil.ly/L84dM

Logging by Using an EFK Stack

For the purposes of this book, we use an Elasticsearch, Fluentd, and Kibana
(EFK) stack to set up monitoring for our cluster. Implementing an EFK stack can
be a good way to get started, but at some point you’ll probably ask yourself, “Is
it really worth managing my own logging platform?” Typically it’s not worth the
effort because self-hosted logging solutions are great on day one, but they
become overly complex by day 365. Self-hosted logging solutions become more
operationally complex as your environment scales. There is no one correct
answer, so evaluate whether your business requirements need you to host your
own solution. There are also a number of hosted solutions based on the EFK
stack, so you can always move pretty easily if you choose not to host it yourself.

You will deploy the following for your monitoring stack:
e Elasticsearch Operator

e Fluentd (forwards logs from our Kubernetes environment into
Elasticsearch)

¢ Kibana (visualization tool to search, view, and interact with logs stored
in Elasticsearch)

Deploy the manifest to your Kubernetes cluster:

kubectl create namespace logging

kubectl apply -f
https://raw.githubusercontent.com/dstrebel/kbp/master/elasticsearch-operator.yaml -n
logging

Deploy the Elasticsearch operator to aggregate all forwarded logs:

kubectl apply -f https://raw.githubusercontent.com/dstrebel/kbp/master/efk.yaml -n
logging

This deploys Fluentd and Kibana, which will allow us to forward logs to
Elasticsearch and visualize the logs using Kibana.

You should see the following pods deployed to your cluster:

kubectl get pods -n logging

efk-kibana-854786485-knhl5 1/1 Running 0 4m
elasticsearch-operator-5647dcécb-tc2st 1/1 Running © 5m
elasticsearch-operator-sysctl-ktvk9 1/1 Running © 5m
elasticsearch-operator-sysctl-1f2zs 1/1 Running © 5m
elasticsearch-operator-sysctl-r8qghb 1/1 Running © 5m
es-client-efk-cluster-9f4cc859-sdrsl 1/1 Running 0 4m
es-data-efk-cluster-default-0 1/1 Running 0 4m
es-master-efk-cluster-default-0 1/1 Running 0 4m
fluent-bit-4kxdl 1/1 Running 0 4m
fluent-bit-tmqjb 1/1 Running © 4m
fluent-bit-w6fs5 1/1 Running 0 4m

After all pods are “Running,” let’s go ahead and connect to Kibana through port
forwarding to our localhost:

export POD_NAME=$(kubectl get pods --namespace logging -1 "app=kibana,release=efk" -
o jsonpath="{.items[0].metadata.name}")

kubectl port-forward $POD_NAME 5601:5601

Now point your web browser at http://localhost:5601 to open the Kibana
dashboard.

To interact with the logs forwarded from our Kubernetes cluster, you first need
to create an index.

The first time you start Kibana, you will need to navigate to the Management
tab, and create an index pattern for Kubernetes logs. The system will guide you
through the required steps.

After you create an index, you can search through logs using a Lucene query
syntax, such as the following:

log: (WARN|INFO|ERROR | FATAL)

This returns all logs containing the fields warn, info, error, or fatal. You can see
an example in Figure 3-4.

http://localhost:5601

178 hits New Save Open Share CAutorefresh < @ Last15minutes >

(g el ER o |

kubernetes* April 6th 2019, 10:26:49.116 - April 6th 2019, 10:41:49.116 — Auto

Selected fields

Available fields L g

O @iy mp. - H
d
index
ore
Time _source
type
* April 6th 2019, 10:41:44.462 1og: ERROR: logging before flag.Parse: eapster™ is forbidden: User

system:servic systen' @timestamp: April 6t
h 2010, 10:41:44.462 stream: s e: April 6th 2018, 10:41:44.462 kube es heapster-5d6f9b8dbe-srtjh

kubernetes nanespace name: kube-system Kubernetes.pod id: 0698fde2-5872-11e9-880f-0a58ac11646 kubernetes.labels. kBs-app: heapster
odepooll-36621540-0 kubernetes.container_name: heapster-nann

kubernetes . labels. p 1 h: 1820564027 hest: a

» April 6th 2019, 10:41:44.457 16g: ERROR: logging before flag.Parse: 16406 15:41:44.456870 1 y_lib.go:188] Resol

ng the deployment. Acti aplcpu:{i:{value:88 sca

0640 scale:@} d:{Dec:ude3cnilue@le} s:140Mi Format:BinarySI}) Requests:maplcpu:{i:{value:89 scale:-3} d:{Dec:ub@3cniluole} s:8ém Form
at:DecimalSI} memory:{i:{value:146800640 scale:0} d:{Dec;u003cniludo3e} s:140Mi Format:BinarySI}} Expected: {Limits:maplcpu:{i:{valy

e:0 scale:0) d:{Dec:0xc420282480} s: Format:DecimalSI} memory:{i:{value:8 scale:0} d: {Dec:6xc420282660} s: Format:BinarySI}] Requests

» April 6th 2019, 10:41:34.258 16g: ERROR: logging before flag.Parse: E6406 15:41:34.258557 1 nanny L

b.g0:116] deployments_extensions "heapster~ is forbidden: User
system:serviceaccount: kube-system:heapster” cannot update deployments. extensions

v in the namespace
h 2010, 10:41:34.258 stream: stderr time: April 6th 2019, 10:41:34.258 kubernetes.pod_na

kubernetes.nanespace name: kube-system kubernetes.pod id: 0698fe2-5872-11¢9-8807-0a58ac11646 kubernetes.labels.kBs-app: heapster
kubernetes . labels. pod-template-hash: 1820564027 kubernetes.host: aks-nodepooll-36621548-0 kubernetes.contais

b April 6th 2019, 10:41:34.171 15g: ERROR: logging b la thin th
ng the deploynent. Actual: {Limits:maplcpu:{i:{value:80 scale:-3} d: 3
O Coligpse 0640 scale:0} d:{Dec:u803cniluse3e} s:140Mi Format:BinarySI}) Requests:maplmemory:{i:{value:146800640 scale:8} d:{Dec:u083cniluoo3e;

Figure 3-4. The Kibana dashboard

In Kibana, you can perform ad hoc queries on the logs, and you can build out
dashboards to give you an overview of the environment.

Go ahead and take some time to explore the different logs that you can visualize
in Kibana.

Alerting

Alerting is a double-edged sword, and you need to strike a balance on what you
alert on versus what should just be monitored. Alerting on too much causes alert
fatigue, and important events will be lost in all the noise. An example would be
generating an alert any time a pod fails. You might be asking, “Why wouldn’t I
want to monitor for a pod failure?” Well, the beauty of Kubernetes is that it
provides features to automatically check the health of a container and restart the
container automatically. You really want to focus alerting on events that affect
your Service-Level Objectives (SLOs). SLOs are specific measurable
characteristics such as availability, throughput, frequency, and response time that
you agree upon with the end user of your service. Setting SL.Os sets expectations
with your end users and provides clarity on how the system should behave.
Without an SLO, users can form their opinion, which might be an unrealistic
expectation of the service. Alerting in a system like Kubernetes needs an entirely
new approach from what we are typically accustomed to and needs to focus on

how the end user is experiencing the service. For example, if your SLO for a
frontend service is a 20-ms response time and you are seeing higher latency than
average, you want to be alerted on the problem.

You need to decide what alerts are good and require intervention. In typical
monitoring, you might be accustomed to alerting on high CPU usage, memory
usage, or processes not responding. These might seem like good alerts, but
probably don’t indicate an issue that someone needs to take immediate action on
and requires notifying an on-call engineer. An alert to an on-call engineer should
be an issue that needs immediate human attention and is affecting the UX of the
application. If you have ever experienced a “That issue resolved itself” scenario,
then that is a good indication that the alert did not need to contact an on-call
engineer.

One way to handle alerts that don’t need immediate action is to focus on
automating the remediation of the cause. For example, when a disk fills up, you
could automate the deletion of logs to free up space on the disk. Also, utilizing
Kubernetes liveness probes in your app deployment can help autoremediate
issues with a process that is not responding in the application.

When building alerts, you also need to consider alert thresholds; if you set
thresholds too short, then you can get a lot of false positives with your alerts. It’s
generally recommended to set a threshold of at least five minutes to help
eliminate false positives. Coming up with standard thresholds can help define a
standard and avoid micromanaging many different thresholds. For example, you
might want to follow a specific pattern of 5 minutes, 10 minutes, 30 minutes, 1
hour, and so on.

When building notifications for alerts you want to ensure that you provide
relevant information in the notification, for example, providing a link to a
“playbook” that gives troubleshooting or other helpful information on resolving
the issue. You should also include information on the datacenter, region, app
owner, and affected system in notifications. Providing all this information will
allow engineers to quickly formalize a theory around the issue.

You also need to build notification channels to route alerts that are fired. When
thinking about “Who do I notify when an alert is triggered?” you should ensure
that notifications are not just sent to a distribution list or team emails. What
tends to happen if alerts are sent to larger groups is that they end up getting

filtered out because users see these as noise. You should route notifications to the
user who is going to take responsibility for the issue.

With alerting, you’ll never get it perfect on day one, and we could argue it might
never be perfect. You just want to make sure that you incrementally improve on
alerting to preclude alert fatigue, which can cause many issues with staff burnout
and your systems.

NOTE

For further insight on how to approach alerting on and managing systems, read “My
Philosophy on Alerting” by Rob Ewaschuk, which is based on Rob’s observations as a site
reliability engineer (SRE) at Google.

Best Practices for Monitoring, Logging, and
Alerting

Following are the best practices that you should adopt regarding monitoring,
logging, and alerting.

Monitoring

¢ Monitor nodes and all Kubernetes components for utilization,
saturation, and error rates, and monitor applications for rate, errors, and
duration.

e Use black-box monitoring to monitor for symptoms and not predictive
health of a system.

e Use white-box monitoring to inspect the system and its internals with
instrumentation.

e Implement time-series-based metrics to gain high-precision metrics that
also allow you to gain insight within the behavior of your application.

e Utilize monitoring systems like Prometheus that provide key labeling
for high dimensionality; this will give a better signal to symptoms of an

https://oreil.ly/YPxju

impacting issue.

e Use average metrics to visualize subtotals and metrics based on factual
data. Utilize sum metrics to visualize the distribution across a specific
metric.

Logging

¢ You should use logging in combination with metrics monitoring to get
the full picture of how your environment is operating.

¢ Be cautious of storing logs for more than 30 to 45 days and, if needed,
use cheaper resources for long-term archiving.

e Limit usage of log forwarders in a sidecar pattern, as they will utilize a
lot more resources. Opt for using a DaemonSet for the log forwarder
and sending logs to STDOUT.

Alerting

e Be cautious of alert fatigue because it can lead to bad behaviors in
people and processes.

e Always look at incrementally improving upon alerting and accept that it
will not always be perfect.

e Alert for symptoms that affect your SLO and customers and not for
transient issues that don’t need immediate human attention.

Summary

In this chapter we discussed the patterns, techniques, and tools that can be used
for monitoring our systems with metric and log collection. The most important
piece to take away from this chapter is that you need to rethink how you perform
monitoring and do it from the outset. Too many times we see this implemented
after the fact, and it can get you into a very bad place in understanding your
system. Monitoring is all about having better insight into a system and being
able to provide better resiliency, which in turn provides a better end-user

experience for your application. Monitoring distributed applications and
distributed systems like Kubernetes requires a lot of work, so you must be ready
for it at the beginning of your journey.

Chapter 4. Configuration, Secrets,
and RBAC

The composable nature of containers allows us as operators to introduce
configuration data into a container at runtime. This makes it possible for us to
decouple an application’s function from the environment it runs in. By means of
the conventions allowed in the container runtime to pass through either
environment variables or mount external volumes into a container at runtime,
you can effectively change the configuration of the application upon its
instantiation. As a developer, it is important to take into consideration the
dynamic nature of this behavior and allow for the use of environment variables
or the reading of configuration data from a specific path available to the
application runtime user.

When moving sensitive data such as secrets into a native Kubernetes API object,
it is important to understand how Kubernetes secures access to the API. The
most commonly implemented security method in use in Kubernetes is Role-
Based Access Control (RBAC) to implement a fine-grained permission structure
around actions that can be taken against the API by specific users or groups.
This chapter covers some of the best practices regarding RBAC and also
provides a small primer.

Configuration Through ConfigMaps and Secrets

Kubernetes allows you to natively provide configuration information to our
applications through ConfigMaps or secret resources. The main differentiator
between the two is the way a pod stores the receiving information and how the
data is stored in the etcd data store.

ConfigMaps

It is very common to have applications consume configuration information
through some type of mechanism such as command-line arguments, environment

variables, or files that are available to the system. Containers allow the developer
to decouple this configuration information from the application, which allows
for true application portability. The ConfigMap API allows for the injection of
supplied configuration information. ConfigMaps are very adaptable to the
application’s requirements and can provide key/value pairs or complex bulk data
such as JSON, XML, or proprietary configuration data.

The ConfigMaps not only provide configuration information for pods, but can
also provide information to be consumed for more complex system services such
as controllers, CRDs, operators, and so on. As mentioned earlier, the ConfigMap
API is meant more for string data that is not really sensitive data. If your
application requires more sensitive data, the Secrets API is more appropriate.

For your application to use the ConfigMap data, it can be injected as either a
volume mounted into the pod or as environment variables.

Secrets

Many of the attributes and reasons for which you would want to use a
ConfigMap apply to secrets. The main differences lie in the fundamental nature
of a Secret. Secret data should be stored and handled in a way that can be easily
hidden and possibly encrypted at rest if the environment is configured as such.
The Secret data is represented as base64-encoded information, and it is critical to
understand that this is not encrypted. As soon as the secret is injected into the
pod, the pod itself can see the secret data in plain text.

Secret data is meant to be small amounts of data, limited by default in
Kubernetes to 1 MB in size, for the base64-encoded data, so ensure that the
actual data is approximately 750 KB because of the overhead of the encoding.
There are three types of secrets in Kubernetes:

generic

This is typically just regular key/value pairs that are created from a file, a

directory, or from string literals using the - - from-literal= parameter, as
follows:

kubectl create secret generic mysecret --from-literal=key1=$3cr3t1 --from-
literal=key2=@3cr3t2"

docker-registry

This is used by the kubelet when passed in a pod template if there is an

imagePullsecret to provide the credentials needed to authenticate to a
private Docker registry:

kubectl create secret docker-registry registryKey --docker-server
myreg.azurecr.io --docker-username myreg --docker-password $up3r$3cr3tP@ssword -
-docker-email ignore@dummy.com

tls

This creates a Transport Layer Security (TLS) secret from a valid
public/private key pair. As long as the cert is in a valid PEM format, the key
pair will be encoded as a secret and can be passed to the pod to use for
SSL/TLS needs:

kubectl create secret tls www-tls --key=./path_to_key/wwwtls.key --
cert=./path_to_crt/wwwtls.crt

Secrets are also mounted into tmpfs only on the nodes that have a pod that
requires the secret and are deleted when the pod that needs it is gone. This
prevents any secrets from being left behind on the disk of the node. Although
this might seem secure, it is important to know that by default, secrets are stored
in the etcd datastore of Kubernetes in plain text, and it is important that the
system administrators or cloud service provider take efforts to ensure that the
security of the etcd environment, including mTLS between the etcd nodes and
enabling encryption at rest for the etcd data. More recent versions of Kubernetes
use etcd3 and have the ability to enable etcd native encryption; however, this is a
manual process that must be configured in the API server configuration by
specifying a provider and the proper key media to properly encrypt secret data
held in etcd. As of Kubernetes v1.10 (it has been promoted to beta in v1.12), we
have the KMS provider, which promises to provide a more secure key process by
using third-party KMS systems to hold the proper keys.

Common Best Practices for the ConfigMap and

Secrets APlIs

The majority of issues that arise from the use of a ConfigMap or secret are
incorrect assumptions on how changes are handled when the data held by the
object is updated. By understanding the rules of the road and adding a few tricks
to make it easier to abide by those rules, you can steer away from trouble:

e To support dynamic changes to your application without having to
redeploy new versions of the pods, mount your ConfigMaps/Secrets as
a volume and configure your application with a file watcher to detect
the changed file data and reconfigure itself as needed. The following
code shows a Deployment that mounts a ConfigMap and a Secret file as
a volume:

apiVersion: vi
kind: ConfigMap
metadata:
name: nginx-http-config
namespace: myapp-prod
data:
config: |
http {
server {
location / {
root /data/html;

}

location /images/ {
root /data;
}
}
}

apiVersion: vi
kind: Secret
metadata:
name: myapp-api-key
type: Opaque
data:
myapikey: YWRtd5thSaW4=

apiVersion: apps/vi
kind: Deployment
metadata:

name: mywebapp
namespace: myapp-prod
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 8080
volumeMounts:
- mountPath: /etc/nginx
name: nginx-config
- mountPath: /usr/var/nginx/html/keys
name: api-key
volumes:
- name: nginx-config
configMap:
name: nginx-http-config
items:
- key: config
path: nginx.conf
- name: api-key
secret:
name: myapp-api-key
secretname: myapikey

NOTE

There are a couple of things to consider when using volumeMounts. First, as soon as the
ConfigMap/Secret is created, add it as a volume in your pod’s specification. Then mount that
volume into the container’s filesystem. Each property name in the ConfigMap/Secret will
become a new file in the mounted directory, and the contents of each file will be the value
specified in the ConfigMap/Secret. Second, avoid mounting ConfigMaps/Secrets using the

volumeMounts.subPath property. This will prevent the data from being dynamically updated
in the volume if you update a ConfigMap/Secret with new data.

e ConfigMap/Secrets must exist in the namespace for the pods that will
consume them prior to the pod being deployed. The optional flag can be
used to prevent the pods from not starting if the ConfigMap/Secret is
not present.

e Use an admission controller to ensure specific configuration data or to
prevent deployments that do not have specific configuration values set.
An example would be if you require all production Java workloads to

have certain JVM properties set in production environments. There is an
alpha API called PodPresets that will allow ConfigMaps and secrets to
be applied to all pods based on an annotation, without needing to write a
custom admission controller.

If you’re using Helm to release applications into your environment, you
can use a life cycle hook to ensure the ConfigMap/Secret template is
deployed before the Deployment is applied.

Some applications require their configuration to be applied as a single
file such as a JSON or YAML file. ConfigMap/Secrets allows an entire
block of raw data by using the | symbol, as demonstrated here:

apiVersion: vi
kind: ConfigMap
metadata:

name: config-file

config: |

"{otDevice": {

"name": "remoteValve",
"username": "CC:22:3D:E3:CE:30",
"port": 51826,

"pin": "031-45-154"

o If the application uses system environment variables to determine its
configuration, you can use the injection of the ConfigMap data to create
an environment variable mapping into the pod. There are two main
ways to do this: mounting every key/value pair in the ConfigMap as a
series of environment variables into the pod using envFrom and then
using configMapRef or secretRef, or assigning individual keys with
their respective values using the configMapKeyRef or secretKeyRef.

If you’re using the configMapKeyRef or secretKeyRef method, be
aware that if the actual key does not exist, this will prevent the pod from
starting.

e If you’re loading all of the key/value pairs from the ConfigMap/Secret

into the pod using envFrom, any keys that are considered invalid
environment values will be skipped; however, the pod will be allowed
to start. The event for the pod will have an event with reason

InvalidVariableNames and the appropriate message about which key
was skipped. The following code is an example of a Deployment with a
ConfigMap and Secret reference as an environment variable:

apiVersion: vi
kind: ConfigMap
metadata:
name: mysql-config
data:
mysqldb: myappdbil
user: mysqluserl

apiVersion: vi

kind: Secret

metadata:
name: mysql-secret

type: Opaque

data:
rootpassword: YWRtJasdhaW4=
userpassword: MWYyZDigKJGUyfgKIBmU2N2Rm

apiVersion: apps/vi
kind: Deployment
metadata:
name: myapp-db-deploy
spec:
selector:
matchLabels:
app: myapp-db
template:
metadata:
labels:
app: myapp-db
spec:
containers:
- name: myapp-db-instance
image: mysql

resources:
limits:
memory: "128Mi1"
cpu: "500m"
ports:

- containerPort: 3306

env:
- name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-secret
key: rootpassword
- name: MYSQL_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-secret
key: userpassword
- name: MYSQL_USER
valueFrom:
configMapKeyRef:
name: mysql-config
key: user
- name: MYSQL_DB
valueFrom:
configMapKeyRef:
name: mysql-config
key: mysqldb

e If there is a need to pass command-line arguments to your containers,

environment variable data can be sourced using $(ENV_KEY)
interpolation syntax:

[...]
spec:
containers:
- name: load-gen
image: busybox
command: ["/bin/sh"]
args: ["-c", "while true; do curl $(WEB_UI_URL); sleep 10;done"]
ports:
- containerPort: 8080
env:
- name: WEB_UI_URL
valueFrom:
configMapKeyRef:
name: load-gen-config
key: url

e When consuming ConfigMap/Secret data as environment variables, it is
very important to understand that updates to the data in the
ConfigMap/Secret will not update in the pod and will require a pod

restart either through deleting the pods and letting the ReplicaSet
controller create a new pod, or triggering a Deployment update, which
will follow the proper application update strategy as declared in the
Deployment specification.

e [t is easier to assume that all changes to a ConfigMap/Secret require an
update to the entire deployment; this ensures that even if you’re using
environment variables or volumes, the code will take the new
configuration data. To make this easier, you can use a CI/CD pipeline to

update the name property of the ConfigMap/Secret and also update the
reference in the deployment, which will then trigger an update through
normal Kubernetes update strategies of your deployment. We will
explore this in the following example code. If you’re using Helm to
release your application code into Kubernetes, you can take advantage
of an annotation in the Deployment template to check the sha256
checksum of the ConfigMap/Secret. This triggers Helm to update the
Deployment using the helm upgrade command when the data within a
ConfigMap/Secret is changed:

apiVersion: apps/vi
kind: Deployment
[...]
spec:
template:
metadata:
annotations:
checksum/config: {{ include (print $.Template.BasePath "/configmap.yaml") .
| sha256sum }}

[...]

Best practices specific to secrets

Because of the nature of sensitive data of the Secrets API, there are naturally
more specific best practices, which are mainly around the security of the data
itself:

e The original specification for the Secrets API outlined a pluggable
architecture to allow the actual storage of the secret to be configurable
based on requirements. Solutions such as HashiCorp Vault, Aqua
Security, Twistlock, AWS Secrets Manager, Google Cloud KMS, or

Azure Key Vault allow the use of external storage systems for secret
data using a higher level of encryption and auditability than what is
offered natively in Kubernetes.

e Assign an imagePullSecrets to a serviceaccount that the pod will
use to automatically mount the secret without having to declare it in the
pod.spec. You can patch the default service account for the namespace

of your application and add the imagePullSecrets to it directly. This
automatically adds it to all pods in the namespace:

Create the docker-registry secret first

kubectl create secret docker-registry registryKey --docker-server
myreg.azurecr.io --docker-username myreg --docker-password $up3r$3cr3tP@ssword
- -docker-email ignore@dummy.com

patch the default serviceaccount for the namespace you wish to configure
kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name":
"registryKey"}]1}'

e Use CI/CD capabilities to get secrets from a secure vault or encrypted
store with a Hardware Security Module (HSM) during the release
pipeline. This allows for separation of duties. Security management
teams can create and encrypt the secrets, and developers just need to
reference the names of the secret expected. This is also the preferred
DevOps process to ensure a more dynamic application delivery process.

RBAC

When working in large, distributed environments, it is very common that some
type of security mechanism is needed to prevent unauthorized access to critical
systems. There are numerous strategies around how to limit access to resources
in computer systems, but the majority all go through the same phases. Using an
analogy of a common experience such as flying to a foreign country can help
explain the processes that happen in systems like Kubernetes. We can use the
common travler’s experience with a passport, travel visa, and customs or border
guards to show the process:

1. Passport (subject authentication). Usually you need to have a passport

issued by some government agency that will offer some sort of
verification as to who you are. This would be equivalent to a user
account in Kubernetes. Kubernetes relies on an external authority to
authenticate users; however, service accounts are a type of account that
is managed directly by Kubernetes.

2. Visa or travel policy (authorization). Countries will have formal
agreements to accept travelers holding passports from other countries
through formal short-term agreements such as visas. The visas will also
outline what the visitor may do and for how long they may stay in the
visiting country, depending on the specific type of visa. This would be
equivalent to authorization in Kubernetes. Kubernetes has different
authorization methods, but the most used is RBAC. This allows very
granular access to different API capabilities.

3. Border patrol or customs (admission control). When entering a foreign
country, usually there is a body of authority that will check the requisite
documents, including the passport and visa, and, in many cases, inspect
what is being brought into the country to ensure it abides by that
country’s laws. In Kubernetes this is equivalent to admission
controllers. Admission controllers can allow, deny, or change the
requests into the API based upon rules and policies that are defined.
Kubernetes has many built-in admission controllers such as
PodSecurity, ResourceQuota, and ServiceAccount controllers.
Kubernetes also allows for dynamic controllers through the use of
validating or mutating admission controllers.

The focus of this section is the least understood and the most avoided of these
three areas: RBAC. Before we outline some of the best practices, we first must
present a primer on Kubernetes RBAC.

RBAC Primer

The RBAC process in Kubernetes has three main components that need to be
defined: the subject, the rule, and the role binding.

Subjects

The first component is the subject, the item that is actually being checked for
access. The subject is usually a user, a service account, or a group. As mentioned
earlier, users as well as groups are handled outside of Kubernetes by the
authorization module used. We can categorize these as basic authentication,
x.509 client certificates, or bearer tokens. The most common implementations
use either x.509 client certificates or some type of bearer token using something
like an OpenID Connect system such as Azure Active Directory (Azure AD),
Salesforce, or Google.

NOTE

Service accounts in Kubernetes are different than user accounts in that they are namespace
bound, internally stored in Kubernetes; they are meant to represent processes, not people, and
are managed by native Kubernetes controllers.

Rules

Simply stated, this is the actual list of actions that can be performed on a specific
object (resource) or a group of objects in the API. Verbs align to typical CRUD
(Create, Read, Update, and Delete) type operations but with some added
capabilities in Kubernetes such as watch, list, and exec. The objects align to
the different API components and are grouped together in categories. Pod
objects, as an example, are part of the core API and can be referenced with
apiGroup: whereas deployments are under the app API Group. This is the
real power of the RBAC process and probably what intimidates and confuses
people when creating proper RBAC controls.

Roles

Roles allow the definition of scope of the rules defined. Kubernetes has two
types of roles, role and clusterRole, the difference being that role is specific

to a namespace, and clusterRole is a cluster-wide role across all namespaces.
An example Role definition with namespace scope would be as follows:

kind: Role
apiVersion: rbac.authorization.k8s.io0/v1
metadata:

namespace: default
name: pod-viewer
rules:
- apiGroups: [""] # "" indicates the core API group
resources: ["pods"]
verbs: ["get", "watch", "list"]

RoleBindings

The RoleBinding allows a mapping of a subject like a user or group to a specific
role. Bindings also have two modes: roleBinding, which is specific to a
namespace, and clusterRoleBinding, which is across the entire cluster. Here’s
an example RoleBinding with namespace scope:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: noc-helpdesk-view
namespace: default
subjects:
- kind: User
name: helpdeskuser@example.com
apiGroup: rbac.authorization.k8s.1o
roleRef:
kind: Role #this must be Role or ClusterRole
name: pod-viewer # this must match the name of the Role or ClusterRole to bind to
apiGroup: rbac.authorization.k8s.1o

RBAC Best Practices

RBAC is a critical component of running a secure, dependable, and stable
Kubernetes environment. The concepts underlying RBAC can be complex;
however, adhering to a few best practices can ease some of the major stumbling
blocks:

e Applications that are developed to run in Kubernetes rarely ever need
an RBAC role and role binding associated to it. Only if the application
code actually interacts directly with the Kubernetes API directly does
the application require RBAC configuration.

o If the application does need to directly access the Kubernetes API to
perhaps change configuration depending on endpoints being added to a

service, or if it needs to list all of the pods in a specific namespace, the
best practice is to create a new service account that is then specified in
the pod specification. Then, create a role that has the least amount of
privileges needed to accomplish its goal.

e Use an OpenID Connect service that enables identity management and,
if needed, two-factor authentication. This will allow for a higher level
of identity authentication. Map user groups to roles that have the least
amount of privileges needed to accomplish the job.

¢ Along with the aforementioned practice, you should use Just in Time
(JIT) access systems to allow site reliability engineers (SREs),
operators, and those who might need to have escalated privileges for a
short period of time to accomplish a very specific task. Alternatively,
these users should have different identities that are more heavily audited
for sign-on, and those accounts should have more elevated privileges
assigned by the user account or group bound to a role.

e Specific service accounts should be used for CI/CD tools that deploy
into your Kubernetes clusters. This ensures for auditability within the
cluster and an understanding of who might have deployed or deleted
any objects in a cluster.

¢ If you’re using Helm to deploy applications, the default service account
is Tiller, deployed to kube-systenm. It is better to deploy Tiller into each
namespace with a service account specifically for Tiller that is scoped
for that namespace. In the CI/CD tool that calls the Helm
install/upgrade command, as a prestep, initialize the Helm client with
the service account and the specific namespace for the deployment. The
service account name can be the same for each namespace, but the
namespace should be specific. It is important to call out that as of this
publication, Helm v3 is in alpha state and one of its core principles is
that Tiller is no longer needed to run in a cluster. An example Helm Init
with a Service account and namespace would look like this:

kubectl create namespace myapp-prod

kubectl create serviceaccount tiller --namespace myapp-prod

cat <<EOF | kubectl apply -f -
kind: Role
apiVersion: rbac.authorization.k8s.10/v1
metadata:
name: tiller
namespace: myapp-prod
rules:
- apiGroups: ["", "batch", "extensions", "apps"]
resources: ["*"]
verbs: ["*"]
EOF

cat <<EOF | kubectl apply -f -
kind: RoleBinding
apiVersion: rbac.authorization.k8s.10/v1
metadata:
name: tiller-binding
namespace: myapp-prod
subjects:
- kind: ServiceAccount
name: tiller
namespace: myapp-prod
roleRef:
kind: Role
name: tiller
apiGroup: rbac.authorization.k8s.1o
EOF

helm init --service-account=tiller --tiller-namespace=myapp-prod

helm install ./myChart --name myApp --namespace myapp-prod --set
global.namespace=myapp-prod

NOTE

Some public Helm charts do not have value entries for namespace choices to deploy the
application components. This might require customization of the Helm chart directly or using
an elevated Tiller account that can deploy to any namespace and has rights to create
namespaces.

e Limit any applications that require watch and list on the Secrets API.
This basically allows the application or the person who deployed the
pod to view the secrets in that namespace. If an application needs to

access the Secrets API for specific secrets, limit using get on any
specific secrets that the application needs to read outside of those that it
is directly assigned.

Summary

Principles for developing applications for cloud native delivery is a topic for
another day, but it is universally accepted that strict separation of configuration
from code is a key principal for success. With native objects for nonsensitive
data, the ConfigMap API, and for sensitive data, the Secrets API, Kubernetes
can now manage this process in a declarative approach. As more and more
critical data is represented and stored natively in the Kubernetes API, it is critical
to secure access to those APIs through proper gated security processes such as
RBAC and integrated authentication systems.

As you’ll see throughout the rest of this book, these principles permeate every
aspect of the proper deployment of services into a Kubernetes platform to build a
stable, reliable, secure, and robust system.

Chapter 5. Continuous
Integration, Testing, and
Deployment

In this chapter, we look at the key concepts of how to integrate a continuous
integration/continuous deployment (CI/CD) pipeline to deliver your applications
to Kubernetes. Building a well-integrated pipeline will enable you to deliver
applications to production with confidence, so here we look at the methods,
tools, and processes to enable CI/CD in your environment. The goal of CI/CD is
to have a fully automated process, from a developer checking in code to rolling
out the new code to production. You want to avoid manually rolling out updates
to your apps deployed to Kubernetes because it can be very error prone.
Manually managing application updates in Kubernetes leads to configuration
drift and fragile deployment updates, and overall agility delivering an
application is lost.

We cover the following topics in this chapter:
e Version control
e CI
e Testing
e Tagging images
e CD
¢ Deployment strategies
e Testing Deployments
¢ Chaos testing

We also go through an example CI/CD pipeline, which consists of the following
tasks:

e Pushing code changes to the Git repository

¢ Running a build of the application code

e Running test against the code

¢ Building a container image on a successful test

e Pushing the container image to a container registry
e Deploying the application to Kubernetes

e Running a test against a deployed application

e Performing rolling upgrades on Deployments

Version Control

Every CI/CD pipeline starts with version control, which maintains a running
history of application and configuration code changes. Git has become the
industry standard as a source-control management platform, and every Git
repository will contain a master branch. A master branch contains your
production code. You will have other branches for feature and development work
that eventually will also be merged to your master branch. There are many ways
to set up a branching strategy, and the setup will be very dependent on the
organization structure and separation of duties. We find that including both
application code and configuration code, such as a Kubernetes manifest or Helm
charts, helps promote good DevOps principles of communication and
collaboration. Having both application developers and operation engineers
collaborate in a single repository builds confidence in a team to deliver an
application to production.

Continuous Integration

ClI is the process of integrating code changes continuously into a version-control
repository. Instead of committing large changes less often, you commit smaller
changes more often. Each time a code change is committed to the repository, a
build is kicked off. This allows you to have a quicker feedback loop into what

might have broken the application if problems indeed arise. At this point you
might be asking, “Why do I need to know about how the application is built,
isn’t that the application developer’s role?” Traditionally, this might have been
the case, but as companies move toward embracing a DevOps culture, the
operations team comes closer to the application code and software development
workflows.

There are many solutions that provide CI, with Jenkins being one of the more
popular tools.

Testing

The goal of running tests in the pipeline is to quickly provide a feedback loop for
code changes that break the build. The language that you’re using will determine
the testing framework you use. For example, Go applications can use go test
for running a suite of unit tests against your code base. Having an extensive test
suite helps to avoid delivering bad code into your production environment.
You’ll want to ensure that if tests fail in the pipeline, the build fails after the test
suite runs. You don’t want to build the container image and push it to a registry
if you have failing tests against your code base.

Again, you might be asking, “Isn’t creating tests a developer’s job?” As you
begin automating the delivery of infrastructure and applications to production,
you need to think about running automated tests against all of the pieces of the
code base. For example, in Chapter 2, we talked about using Helm to package
applications for Kubernetes. Helm includes a tool called helm lint, which runs
a series of tests against a chart to examine any potential issues with the chart
provided. There are many different tests that need to be run in an end-to-end
pipeline. Some are the developer’s responsibility, like unit testing for the
application, but others, like smoke testing, will be a joint effort. Testing the code
base and its delivery to production is a team effort and needs to be implemented
end to end.

Container Builds

When building your images, you should optimize the size of the image. Having a

smaller image decreases the time it takes to pull and deploy the image, and also
increases the security of the image. There are multiple ways of optimizing the
image size, but some do have trade-offs. The following strategies will help you
build the smallest image possible for your application:

Multistage builds

These allow you to remove the dependencies not needed for your
applications to run. For example, with Golang, we don’t need all the build
tools used to build the static binary, so multistage builds allow you in a
single Dockerfile to run a build step with the final image containing only the
static binary that’s needed to run the application.

Distroless base images

These remove all the unneeded binaries and shells from the image. This
really reduces the size of the image and increases the security. The trade-off
with distroless images is you don’t have a shell, so you can’t attach a
debugger to the image. You might think this is great, but it can be a pain to
debug an application. Distroless images contain no package manager, shell,
or other typical OS packages, so you might not have access to the debugging
tools you are accustomed to with a typical OS.

Optimized base images

These are images that focus on removing the cruft out of the OS layer and
provide a slimmed-down image. For example, Alpine provides a base image
that starts at just 10 MB, and it also allows you to attach a local debugger for
local development. Other distros also typically offer an optimized base
image, such as Debian’s Slim image. This might be a good option for you
because its optimized images give you capabilities you expect for
development while also optimizing for image size and lower security
exposure.

Optimizing your images is extremely important and often overlooked by users.
You might have reasons due to company standards for OSes that are approved
for use in the enterprise, but push back on these so that you can maximize the
value of containers.

We have found that companies starting out with Kubernetes tend to be successful

with using their current OS but then choose a more optimized image, like Debian
Slim. After you mature in operationalizing and developing against a container
environment, you’ll be comfortable with distroless images.

Container Image Tagging

Another step in the CI pipeline is to build a Docker image so that you have an
image artifact to deploy to an environment. It’s important to have an image
tagging strategy so that you can easily identify the versioned images you have
deployed to your environments. One of the most important things we can’t
preach enough about is not to use “latest” as an image tag. Using that as an
image tag is not a version and will lead to not having the ability to identify what
code change belongs to the rolled-out image. Every image that is built in the CI
pipeline should have a unique tag for the built image.

There are multiple strategies we’ve found to be effective when tagging images in
the CI pipeline. The following strategies allow you to easily identify the code
changes and the build with which they are associated:

BuildID

When a CI build kicks off, it has a buildID associated with it. Using this part
of the tag allows you to reference which build assembled the image.

Build System-BuildID

This one is the same as BuildID but adds the Build System for users who
have multiple build systems.

Git Hash

On new code commits, a Git hash is generated, and using the hash for the tag
allows you to easily reference which commit generated the image.

githash-buildID

This allows you to reference both the code commit and the buildID that
generated the image. The only caution here is that the tag can be kind of
long.

Continuous Deployment

CD is the process by which changes that have passed successfully through the CI
pipeline are deployed to production without human intervention. Containers
provide a great advantage for deploying changes into production. Container
images become an immutable object that can be promoted through dev and
staging and into production. For example, one of the major issues we’ve always
had has been maintaining consistent environments. Almost everyone has
experienced a Deployment that works fine in staging, but when it gets promoted
to production, it breaks. This is due to having configuration drift, with libraries
and versioning of components differing in each environment. Kubernetes gives
us a declarative way to describe our Deployment objects that can be versioned
and deployed in a consistent manner.

One thing to keep in mind is that you need to have a solid CI pipeline set up
before focusing on CD. If you don’t have a robust set of tests to catch issues
early in the pipeline, you’ll end up rolling bad code to all your environments.

Deployment Strategies

Now that we learned the principles of CD, let’s take a look at the different
rollout strategies that you can use. Kubernetes provides multiple strategies to roll
out new versions of your application. And even though it has a built-in
mechanism to provide rolling updates, you can also utilize some more advanced
strategies. Here, we examine the following strategies to deliver updates to your
application:

e Rolling updates
e Blue/green deployments
e Canary deployments

Rolling updates are built into Kubernetes and allow you to trigger an update to
the currently running application without downtime. For example, if you took
your frontend app that is currently running frontend:v1 and updated the
Deployment to frontend:v2, Kubernetes would update the replicas in a rolling
fashion to frontend:v2. Figure 5-1 depicts a rolling update.

Rolling update started

Frontend:v1
Pods

—p| Deployment v1

Service

L]
- 2=t Y

L3 Deployment v2f—py Frontend:v2 ",
~_ Pods _-

e -
L

Rolling update completed

—X)eployment V1

Terminated

Service

Frontend:v2
Pods

| Deployment v2

Figure 5-1. A Kubernetes rolling update

A Deployment object also lets you configure the maximum amount of replicas to
be updated and the maximum unavailable pods during the rollout. The following
manifest is an example of how you specify the rolling update strategy:

kind: Deployment
apiVersion: vi
metadata:
name: frontend
spec:
replicas: 3
template:
spec:
containers:
- name: frontend
image: brendanburns/frontend:vi

strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 1 # Maximum amount of replicas to update at one time
maxUnavailable: 1 # Maximum amount of replicas unavailable during rollout

You need to be cautious with rolling updates because using this strategy can
cause dropped connections. To deal with this issue, you can utilize readiness
probes and preStop life cycle hooks. The readiness probe ensures that the new
version deployed is ready to accept traffic, whereas the preStop hook can ensure
that connections are drained on the current deployed application. The life cycle
hook is called before the container exits and is synchronous, so it must complete
before the final termination signal is given. The following example implements a
readiness probe and life cycle hook:

kind: Deployment
apiVersion: vi
metadata:
name: frontend
spec:
replicas: 3
template:
spec:
containers:
- name: frontend
image: brendanburns/frontend:vi
livenessProbe:
...
readinessProbe:
httpGet:
path: /readiness # probe endpoint
port: 8888
lifecycle:
preStop:
exec:
command: ["/usr/sbin/nginx","-s","quit"]
strategy:
...

The preStop life cycle hook in this example will gracefully exit NGINX,
whereas a SIGTERM conducts a nongraceful, quick exit.

Another concern with rolling updates is that you now have two versions of the
application running at the same time during the rollover. Your database schema

needs to support both versions of the application. You can also use a feature flag
strategy in which your schema indicates the new columns created by the new
app version. After the rolling update has completed, the old columns can be
removed.

We have also defined a readiness and liveness probe in our Deployment
manifest. A readiness probe will ensure that your application is ready to serve
traffic before putting it behind the service as an endpoint. The liveness probe
ensures that your application is healthy and running, and restarts the pod if it
fails its liveness probe. Kubernetes can automatically restart a failed pod only if
the pod exits on error. For example, the liveness probe can check its endpoint
and restart it if we had a deadlock from which the pod did not exit.

Blue/green deployments allow you to release your application in a predictable
manner. With blue/green deployments, you control when the traffic is shifted
over to the new environment, so it gives you a lot of control over the rollout of a
new version of your application. With blue/green deployments, you are required
to have the capacity to deploy both the existing and new environment at the
same time. These types of deployments have a lot of advantages, such as easily
switching back to your previous version of the application. There are some
things that you need to consider with this deployment strategy, however:

e Database migrations can become difficult with this deployment option
because you need to consider in-flight transactions and schema update
compatibility.

e There is the risk of accidental deletion of both environments.
* You need extra capacity for both environments.

e There are coordination issues for hybrid deployments in which legacy
apps can’t handle the deployment.

Figure 5-2 depicts a blue/green deployment.

Existing Version

———

Service/Ingress——»{ Deployment vi |—y{ Frontend:vi
. Pods _-
Blue/Green
Service/Ingress|——»{ Deployment vi —»+ Ffo'g,toednsd“”)
\ 7/
: it
: < e ~
e »{ Deployment v2|— Frorr)tggsd V2

Figure 5-2. A blue/green deployment

Canary deployments are very similar to blue/green deployments, but they give
you much more control over shifting traffic to the new release. Most modern
ingress implementations will give you the ability to release a percentage of
traffic to a new release, but you can also implement a service mesh technology,
like Istio, Linkerd, or HashiCorp Consul, which give you a number of features
that help implement this deployment strategy.

Canary deployments allow you to test new features for only a subset of users.
For example, you might roll out a new version of an application and only want to
test the deployment for 10% of your user base. This allows you to reduce the risk
of a bad deployment or broken features to a much smaller subset of users. If
there are no errors with the deployment or new features, you can begin shifting a
greater percentage of traffic to the new version of the application. There are also
some more advanced techniques that you can use with canary deployments in
which you release to only a specific region of users or just target only users with
a specific profile. These types of releases are often referred to as A/B or dark
releases because users are unaware they are testing new feature deployments.

With canary deployments, you have some of the same considerations that you
have with blue/green deployments, but there are some additional considerations
as well. You must have:

e The ability to shift traffic to a percentage of users
e A firm knowledge of steady state to compare against a new release

e Metrics to understand whether the new release is in a “good” or “bad”
state

Figure 5-3 provides an example of a canary deployment.

Existing Version
Service/Ingress——»| ReplicaSet |—y Frontend:vl
. Pods _-
Canary
i | i *“Frontend:v1 »
Service/Ingress 07> ReplicaSet —"_ Pods '
; Traffic S~ =-7
|
: pr- i ~
e : / Frontend:v2 ®
0% T »| ReplicaSet —h\ _Pods)

Figure 5-3. A canary deployment

NOTE

Canary releases also suffer from having multiple versions of the application running at the
same time. Your database schema needs to support both versions of the application. When
using these strategies, you’ll need to really focus on how to handle dependent services and
having multiple versions running. This includes having strong API contracts and ensuring that
your data services support the multiple versions you have deployed at the same time.

Testing in Production

Testing in production helps you to build confidence in the resiliency, scalability,
and UX of your application. This comes with the caveat that testing in
production doesn’t come without challenges and risk, but it’s worth the effort to
ensure reliability in your systems. There are important aspects you need to
address up front when embarking on the implementation. You need to ensure
that you have an in-depth observability strategy in place, in which you have the
ability to identify the effects of testing in production. Without being able to
observe metrics that affect the end users’ experience of your applications, you
won’t have a clear indication of what to focus on when trying to improve the
resiliency of your system. You also need a high degree of automation in place to
be able to automatically recover from failures that you inject into your systems.

There are many tools that you’ll need to implement to reduce risk and effectively
test your systems when they’re in production. Some of the tools we have already
discussed in this chapter, but there are a few new ones, like distributed tracing,
instrumentation, chaos engineering, and traffic shadowing. To recap, here are the
tools we have already mentioned:

e Canary deployments
e A/B testing

e Traffic shifting

e Feature flags

Chaos engineering was developed by Netflix. It is the practice of deploying
experiments into live production systems to discover weaknesses within those
systems. Chaos engineering allows you to learn about the behavior of your
system by observing it during a controlled experiment. Following are the steps
that you want to implement before doing a “game-day” experiment:

1. Build a hypothesis and learn about your steady state.

2. Have a varying degree of real-world events that can affect the system.

3. Build a control group and experiment to compare to steady state.

4. Perform experiments to form the hypothesis.

It’s extremely important that when you’re running experiments, you minimize
the “blast radius” to ensure that the issues that might arise are minimal. You’ll
also want to ensure that when you’re building experiments, you focus on
automating them, given that running experiments can be labor intensive.

By this point, you might be asking, “Why wouldn’t I just test in staging?” We
find there are some inherent problems when testing in staging, such as the
following:

¢ Nonidentical deployment of resources.

e Configuration drift from production.

e Traffic and user behavior tend to be generated synthetically.

e The number of requests generated don’t mimic a real workload.
e Lack of monitoring implemented in staging.

e The data services deployed contain differing data and load than in
production.

We can’t stress this enough: ensure that you have solid confidence in the
monitoring you have in place for production, because this practice tends to fail
users who don’t have adequate observability of their production systems. Also,
starting with smaller experiments to first learn about your experiments and their
effects will help build confidence.

Setting Up a Pipeline and Performing a Chaos
Experiment

The first step in the process is to get a GitHub repository forked so that you can
have your own repository to use through the chapter. You will need to use the
GitHub interface to fork the repository.

https://oreil.ly/TtJfd

Setting Up CI

Now that you have learned about CI, you will set up a build of the code that we
cloned previously.

For this example, we use the hosted drone.io. You’ll need to sign up for a free
account. Log in with your GitHub credentials (this registers your repositories in
Drone and allows you to synchronize the repositories). After you’re logged in to
Drone, select Activate on your forked repository. The first thing that you need to
do is add some secrets to your settings so that you can push the app to your
Docker Hub registry and also deploy the app to your Kubernetes cluster.

Under your repository in Drone, click Settings and add the following secrets (see
Figure 5-4):

e docker_username

docker_password

kubernetes_server

kubernetes_cert

kubernetes_token

The Docker username and password will be whatever you used to register on
Docker Hub. The following steps show you how to create a Kubernetes service
account and certificate and retrieve the token.

For the Kubernetes server, you will need a publicly available Kubernetes API
endpoint.

https://cloud.drone.io

Secrets

docker_password DELETE
docker_username DELETE
kubernetes_cert DELETE
kubernetes_server DELETE
kubernetes_token DELETE

Secret Name

Allow Pull Requests

Figure 5-4. Drone secrets configuration

NOTE

You will need cluster-admin privileges on your Kubernetes cluster to perform the steps in this
section.

You can retrieve your API endpoint by using the following command:

kubectl cluster-info

You should see something like the following: Kubernetes master is running at

https://kbp.centralus.azmk8s.io:443. You’ll store this in the kubernetes_server
secret.

Now let’s create a service account that Drone will use to connect to the cluster.
Use the following command to create the serviceaccount:

kubectl create serviceaccount drone

https://kbp.centralus.azmk8s.io:443

Now use the following command to create a clusterrolebinding for the
serviceaccount:

kubectl create clusterrolebinding drone-admin \
--clusterrole=cluster-admin \
--serviceaccount=default:drone

Next, retrieve your serviceaccount token:

TOKENNAME="kubectl -n default get serviceaccount/drone -o
jsonpath="'{.secrets[0].name}"'"

TOKEN="kubectl -n default get secret S$STOKENNAME -o jsonpath='{.data.token}' | base64
-4

echo $TOKEN

You’ll want to store the output of the token in the kubernetes_token secret.

You will also need the user certificate to authenticate to the cluster, so use the
following command and paste the ca.crt for the kubernetes_cert secret:

kubectl get secret STOKENNAME -o yaml | grep 'ca.crt:'

Now, build your app in a Drone pipeline and then push it to Docker Hub.

The first step is the build step, which will build your Node.js frontend. Drone
utilizes container images to run its steps, which gives you a lot of flexibility in
what you can do with it. For the build step, use a Node.js image from Docker
Hub:

pipeline:
build:
image: node
commands:
- cd frontend
- npm 1 redis --save

When the build completes, you’ll want to test it, so we include a test step, which
will run npm against the newly built app:

test:
image: node

commands:
- cd frontend
- npm 1 redis --save
- npm test

Now that you have successfully built and tested your app, you next move on to a
publish step to create a Docker image of the app and push it to Docker Hub.

In the .drone.yml file, make the following code change:
repo: <your-registry>/frontend

publish:
image: plugins/docker
dockerfile: ./frontend/Dockerfile
context: ./frontend
repo: dstrebel/frontend
tags: [latest, v2]
secrets: [docker_username, docker_password]

After the Docker build step finishes, it will push the image to your Docker
registry.

Setting Up CD

For the deployment step in your pipeline, you will push your application to your
Kubernetes cluster. You will use the deployment manifest that is under the
frontend app folder in your repository:

kubectl:
image: dstrebel/drone-kubectl-helm
secrets: [kubernetes_server, kubernetes_cert, kubernetes_token]
kubectl: "apply -f ./frontend/deployment.yaml"

After the pipeline finishes its deployment, you will see the pods running in your
cluster. Run the following command to confirm that the pods are running:

kubectl get pods

You can also add a test step that will retrieve the status of the deployment by
adding the following step in your Drone pipeline:

test-deployment:
image: dstrebel/drone-kubectl-helm
secrets: [kubernetes_server, kubernetes cert, kubernetes_token]
kubectl: "get deployment frontend"

Performing a Rolling Upgrade
Let’s demonstrate a rolling upgrade by changing a line in the frontend code. In
the server.js file, change the following line and then commit the change:

console.log('api server is running.');

You will see the deployment rolling out and rolling updates happening to the
existing pods. After the rolling update finishes, you’ll have the new version of
the application deployed.

A Simple Chaos Experiment

There are a variety of tools in the Kubernetes ecosystem that can help with
performing chaos experiments in your environment. They range from
sophisticated hosted Chaos as a Service solutions to basic chaos experiment
tools that kill pods in your environment. Following are some of the tools with
which we’ve seen users have success:

Gremlin

Hosted chaos service that provides advanced features for running chaos
experiments

PowerfulSeal

Open source project that provides advanced chaos scenarios

Chaos Toolkit

Open source project with a mission to provide a free, open, and community-
driven toolkit and API to all the various forms of chaos engineering tools

KubeMonkey

Open source tool that provides basic resiliency testing for pods in your
cluster

Let’s set up a quick chaos experiment to test the resiliency of your application by
automatically terminating pods. For this experiment, we’ll use Chaos Toolkit:

pip install -U chaostoolkit

pip install chaostoolkit-kubernetes

export FRONTEND_URL="http://$(kubectl get svc frontend -o jsonpath="
{.status.loadBalancer.ingress[*].ip}"):8080/api/"

chaos run experiment.json

Best Practices for CIICD

Your CI/CD pipeline won’t be perfect on day one, but consider some of the
following best practices to iteratively improve on the pipeline:

With CI, focus on automation and providing quick builds. Optimizing
the build speed will provide developers quick feedback if their changes
have broken the build.

Focus on providing reliable tests in your pipeline. This will give
developers rapid feedback on issues with their code. The faster the
feedback loop to developers, the more productive they’ll become in
their workflow.

When deciding on CI/CD tools, ensure that the tools allow you to define
the pipeline as code. This will allow you to version-control the pipeline
with your application code.

Ensure that you optimize your images so that you can reduce the size of
the image and also reduce the attack surface when running the image in
production. Multistage Docker builds allow you to remove packages not
needed for the application to run. For example, you might need Maven
to build the application, but you don’t need it for the actual running
image.

Avoid using “latest” as an image tag, and utilize a tag that can be
referenced back to the buildID or Git commit.

e If you are new to CD, utilize Kubernetes rolling upgrades to start out.
They are easy to use and will get you comfortable with deployment. As
you become more comfortable and confident with CD, look at utilizing
blue/green and canary deployment strategies.

e With CD, ensure that you test how client connections and database
schema upgrades are handled in your application.

e Testing in production will help you build reliability into your
application, and ensure that you have good monitoring in place. With
testing in production, also start at a small scale and limit the blast radius
of the experiment.

Summary

In this chapter, we discussed the stages of building a CI/CD pipeline for your
applications, which let you reliably deliver software with confidence. CI/CD
pipelines help reduce risk and increase throughput of delivering applications to
Kubernetes. We also discussed the different deployment strategies that can be
utilized for delivering applications.

Chapter 6. Versioning, Releases,
and Rollouts

One of the main complaints of traditional monolithic applications is that over
time they begin to grow too large and unwieldy to properly upgrade, version, or
modify at the speed the business requires. Many can argue that this is one of the
main critical factors that led to more Agile development practices and the advent
of microservice architectures. Being able to quickly iterate on new code, solve
new problems, or fix hidden problems before they become major issues, as well
as the promise of zero-downtime upgrades, are all goals that development teams
strive for in this ever-changing internet economy world. Practically, these issues
can be solved with proper processes and procedures in place, no matter the type
of system, but this usually comes at a much higher cost of both technology and
human capital to maintain.

The adoption of containers as the runtime for application code allows for the
isolation and composability that was helpful in designing systems that could get
close, but still required a high level of human automation or system management
to maintain at a dependable level over large system footprints. As the system
grew, more brittleness was introduced, and systems engineers began to build
complex automation processes to deliver on complex release, upgrade, and
failure detection mechanisms. Service orchestrators such as Apache Mesos,
HashiCorp Nomad, and even specialized container-based orchestrators such as
Kubernetes and Docker Swarm evolved this into more primitive components to
their runtime. Now, systems engineers can solve more complex system problems
as the table stakes have been elevated to include the versioning, release, and
deployment of applications into the system.

Versioning

This section is not meant to be a primer on software versioning and the history
behind it; there are countless articles and computer science course books on the
subject. The main thing is to pick a pattern and stick with it. The majority of

software companies and developers have agreed that some form of semantic
versioning is the most useful, especially in a microservice architecture in which
a team that writes a certain microservice will depend on the API compatibility of
other microservices that make up the system.

For those new to semantic versioning, the basics are that it follows a three-part
version number in a pattern of major version, minor version, and patch, usually
expressed in a dot notation such as 1(major).2(minor).3(patch). The patch
signifies an incremental release that includes a bug fix or very minor change that
has no API changes. The minor version signifies updates that might have new
API changes but is backward compatible with the previous version. This is a key
attribute for developers working with other microservices they might not be
involved in developing. Knowing that I have my service written to communicate
with version 1.4.7 of another microservice that has been recently upgraded to
1.4.8 should signify that I might not need to change my code unless I want to
take advantage of any new API features. The major version is a breaking change
increment to the code. In most cases, the API is no longer compatible between
major versions of the same code. There are many slight modifications to this
process, including a “4” version to indicate the stage of the software in its
development life cycle, such as 1.4.7.0 for alpha code, and 1.4.7.3 for release.
The most important thing is that there is consistency across the system.

Releases

In truth, Kubernetes does not really have a release controller, so there is no
native concept of a release. This is usually added to a Deployment

metadata. labels specification and/or in the

pod.spec.template.metadata. label specification. When to include either is
very important, and based on how CD is used to update changes to deployments,
it can have varied effects. When Helm for Kubernetes was introduced, one of its
main concepts was the notion of a release to differentiate the running instance of
the same Helm chart in a cluster. This concept is easily reproducible without
Helm; however, Helm natively keeps track of releases and their history, so many
CD tools integrate Helm into their pipelines to be the actual release service.
Again, the key here is consistency in how versioning is used and where it is
surfaced in the system state of the cluster.

Release names can be quite useful if there is institutional agreement as to the
definition of certain names. Often labels such as stable or canary are used,
which helps to also give some kind of operational control when tools such as
service meshes are added to make fine-grained routing decisions. Large
organizations that drive numerous changes for different audiences will also adopt
a ring architecture that can also be denoted such as ring-0, ring-1, and so on.

This topic requires a little side trip into the specifics of labels in the Kubernetes
declarative model. Labels themselves are very much free form and can be any
key/value pair that follows the syntactical rules of the API. The key is not really
the content but how each controller handles labels, changes to labels, and
selector matching of labels. Jobs, Deployments, ReplicaSets, and DaemonSets
support selector-based matching of pods via labels through direct mapping or
set-based expressions. It is important to understand that label selectors are
immutable after they are created, which means if you add a new selector and the
pod’s labels have a corresponding match, a new ReplicaSet is made, not an
upgrade to an existing ReplicaSet. This becomes very important to understand
when dealing with rollouts, which we discuss next.

Rollouts

Prior to the Deployment controller being introduced in Kubernetes, the only
mechanism that existed to control how applications were rolled out by the
Kubernetes controller process was using the command-line interface (CLI)
command kubectl rolling-update on the specific replicaController that
was to be updated. This was very difficult for declarative CD models because
this was not part of the state of the original manifest. One had to carefully ensure
that manifests were updated correctly, versioned properly so as to not
accidentally roll the system back, and archived when no longer needed. The
Deployment controller added the ability to automate this update process using a
specific strategy and then allowing the system to read the declarative new state
based on changes to the spec. template of the deployment. This last fact is
often misunderstood by early users of Kubernetes and causes frustration when
they change a label in the Deployment metadata fields, reapply a manifest, and
no update has been triggered. The Deployment controller is able to determine

changes to the specification and will take action to update the Deployment based
on a strategy that is defined by the specification. Kubernetes deployments

support two strategies, rollingUpdate and recreate, the former being the
default.

If a rolling update is specified, the deployment will create a new ReplicaSet to
scale to the number of required replicas, and the old ReplicaSet will scale down
to zero based on specific values for maxUnavailble and maxSurge. In essence,
those two values will prevent Kubernetes from removing older pods until a
sufficient number of newer pods have come online, and will not create new pods
until a certain number of old pods have been removed. The nice thing is that the
Deployment controller will keep a history of the updates, and through the CLI,
you can roll back deployments to previous versions.

The recreate strategy is a valid strategy for certain workloads that can handle a
complete outage of the pods in a ReplicaSet with little to no degradation of
service. In this strategy the Deployment controller will create a new ReplicaSet
with the new configuration and will delete the prior ReplicaSet before bringing
the new pods online. Services that sit behind queue-based systems are an
example of a service that could handle this type of disruption, because messages
will queue while waiting for the new pods to come online, and message
processing will resume as soon as the new pods come online.

Putting It All Together

Within a single service deployment, a few key areas are affected by versioning,
release, and rollout management. Let’s examine an example deployment and
then break down the specific areas of interest as they relate to best practices:

Web Deployment
apiVersion: apps/vi
kind: Deployment
metadata:
name: gb-web-deploy
labels:
app: guest-book
appver: 1.6.9
environment: production
release: guest-book-stable

release number: 34e57f01
spec:
strategy:
type: rollingUpdate
rollingUpdate:
maxUnavailbale: 3
maxSurge: 2
selector:
matchlLabels:

app: gb-web

ver: 1.5.8

matchExpressions:

- {key: environment, operator: In, values

template:
metadata:

labels:
app: gb-web
ver: 1.5.8
environment: production

spec:

containers:

- name: gb-web-cont
image: evillgenius/gb-web:v1.5.5
env:

- name: GB_DB_HOST
value: gb-mysql
- name: GB_DB_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-pass
key: password

resources:
limits:
memory: "128Mi"
cpu: "500m"
ports:

- containerPort: 80
DB Deployment
apiVersion: apps/vi
kind: Deployment
metadata:
name: gb-mysql
labels:
app: guest-book
appver: 1.6.9
environment: production
release: guest-book-stable
release number: 34e57f01

: [production]}

spec:
selector:
matchlLabels:
app: gb-db
tier: backend
strategy:
type: Recreate
template:
metadata:
labels:
app: gb-db
tier: backend
ver: 1.5.9
environment: production
spec:
containers:
- image: mysql:5.6
name: mysql
env:
- name: MYSQL_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-pass
key: password
ports:
- containerPort: 3306
name: mysql
volumeMounts:
- name: mysql-persistent-storage
mountPath: /var/lib/mysql
volumes:
- name: mysql-persistent-storage
persistentVolumeClaim:
claimName: mysql-pv-claim

DB Backup Job
apiVersion: batch/vi1
kind: Job
metadata:
name: db-backup
labels:
app: guest-book
appver: 1.6.9
environment: production
release: guest-book-stable
release number: 34e57f01
annotations:
"helm.sh/hook": pre-upgrade
"helm.sh/hook": pre-delete

"helm.sh/hook": pre-rollback
"helm.sh/hook-delete-policy": hook-succeeded
spec:
template:
metadata:
labels:
app: gb-db-backup
tier: backend
ver: 1.6.1
environment: production
spec:
containers:
- name: mysqldump
image: evillgenius/mysqldump:vi1
env:
- name: DB_NAME
value: gbdb1
- name: GB_DB_HOST
value: gb-mysql
- name: GB_DB_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-pass
key: password
volumeMounts:
- mountPath: /mysqldump
name: mysqldump
volumes:
- name: mysqldump
hostPath:
path: /home/bck/mysqldump
restartPolicy: Never
backoffLimit: 3

Upon first inspection, things might look a little off. How can a deployment have
a version tag and the container image the deployment uses have a different
version tag? What will happen if one changes and the other does not? What does
release mean in this example, and what effect on the system will that have if it
changes? If a certain label is changed, when will it trigger an update to my
deployment? We can find the answers to these questions by looking at some of
the best practices for versioning, releases, and rollouts.

Best Practices for Versioning, Releases, and Rollouts

Effective CI/CD and the ability to offer reduced or zero downtime deployments

are both dependent on using consistent practices for versioning and release
management. The best practices noted below can help to define consistent
parameters that can assist DevOps teams in delivering smooth software
deployments:

e Use semantic versioning for the application in its entirety that differs
from the version of the containers and the version of the pods
deployment that make up the entire application. This allows for
independent life cycles of the containers that make up the application
and the application as a whole. This can become quite confusing at first,
but if a principled hierarchical approach is taken to when one changes
the other, you can easily track it. In the previous example, the container
itself is currently on v1.5.5; however, the pod specificationisa 1.5.8,
which could mean that changes were made to the pod specification,
such as new ConfigMaps, additional secrets, or updated replica values,
but the specific container used has not changed its version. The
application itself, the entire guestbook application and all of its services,
is at 1.6.9, which could mean that operations made changes along the
way that were beyond just this specific service, such as other services
that make up the entire application.

e Use a release and release version/number label in your deployment
metadata to track releases from CI/CD pipelines. The release name and
release number should coordinate with the actual release in the CI/CD
tool records. This allows for traceability through the CI/CD process into
the cluster and allows for easier rollback identification. In the previous
example, the release number comes directly from the release ID of the
CD pipeline that created the manifest.

e [f Helm is being used to package services for deployment into
Kubernetes, take special care to bundle together those services that need
to be rolled back or upgraded together into the same Helm chart. Helm
allows for easy rollback of all components of the application to bring
the state back to what it was before the upgrade. Because Helm actually
processes the templates and all of the Helm directives before passing a
flattened YAML configuration, the use of life cycle hooks allows for
proper ordering of the application of specific templates. Operators can

use proper Helm life cycle hooks to ensure that upgrades and rollback
will happen correctly. The previous example for the Job specification
uses Helm life cycle hooks to ensure that the template runs a backup of
the database before a rollback, upgrade, or delete of the Helm release. It
also ensures that the Job is deleted after the job is run successfully,
which, until the TTL Controller comes out of alpha in Kubernetes,
would require manual cleanup.

e Agree on a release nomenclature that makes sense for the operational

tempo of the organization. Simple stable, canary, and alpha states are
quite adequate for most situations.

Summary

Kubernetes has allowed for more complex, Agile development processes to be
adopted within companies large and small. The ability to automate much of the
complex processes that would usually require large amounts of human and
technical capital has now been democratized to allow for even startups to take
advantage of this cloud pattern with relative ease. The true declarative nature of
Kubernetes really shines when planning the proper use of labels and using native
Kubernetes controller capabilities. By properly identifying operational and
development states within the declarative properties of the applications deployed
into Kubernetes, organizations can tie in tooling and automation to more easily
manage the complex processes of upgrades, rollouts, and rollbacks of
capabilities.

Chapter 7. Worldwide Application
Distribution and Staging

So far throughout this book, we have seen a number of different practices for
building, developing, and deploying applications, but there is a whole different
set of concerns when it comes to deploying and managing an application with a
worldwide footprint.

There are many different reasons why an application might need to scale to a
global deployment. The first and most obvious one is simply scale. It might be
that your application is so successful or mission critical that it simply needs to be
deployed around the world in order to provide the capacity needed for its users.
Examples of such applications include a worldwide API gateway for a public
cloud provider, a large-scale IoT product with a worldwide footprint, a highly
successful social network, and more.

Although there are relatively few of us who will build out systems that require
worldwide scale, many more applications require a worldwide footprint for
latency. Even with containers and Kubernetes there is no getting around the
speed of light, and thus to minimize latency to our applications, it is sometimes
necessary to distribute our applications around the world to minimize the
distance to our users.

Finally, an even more common reason for global distribution is locality. Either
for reasons of bandwidth (e.g., a remote sensing platform) or data privacy
(geographic restrictions), it is sometimes necessary to deploy an application in
specific locations for the application to be possible or successful.

In all of these cases, your application is no longer simply present in a small
handful of production clusters. Instead it is distributed across tens to hundreds of
different geographic locations, and the management of these locations, as well as
the demands of rolling out a globally reliable service, is a significant challenge.
This chapter covers approaches and practices for doing this successfully.

Distributing Your Image

Before you can even consider running your application around the world, you
need to have that image available in clusters located around the globe. The first
thing to consider is whether your image registry has automatic geo-replication.
Many image registries provided by cloud providers will automatically distribute
your image around the world and resolve a request for that image to the storage
location nearest to the cluster from which you are pulling the image. Many
clouds enable you to decide where you want to replicate the image; for example,
you might know of locations where you are not going to be present. An example
of such a registry is the Microsoft Azure container registry, but others provide
similar services. If you use a cloud-provided registry that supports geo-
replication, distributing your image around the world is simple. You push the
image into the registry, select the regions for geo-distribution, and the registry
takes care of the rest.

If you are not using a cloud registry, or your provider does not support automatic
geo-distribution of images, you will need to solve that problem yourself. One
option is to use a registry located in a specific location. There are several
concerns about such an approach. Image pull latency often dictates the speed
with which you can launch a container in a cluster. This in turn can determine
how quickly you can respond to a machine failure, given that generally in the
case of a machine failure, you will need to pull the container image down to a
new machine.

Another concern about a single registry is that it can be a single point of failure.
If the registry is located in a single region or a single datacenter, it’s possible that
the registry could go offline due to a large-scale incident in that datacenter. If
your registry goes offline, your CI/CD pipeline will stop working, and you’ll be
unable to deploy new code. This obviously has a significant impact on both
developer productivity and application operations. Additionally, a single registry
can be much more expensive because you will be using significant bandwidth
each time you launch a new container, and even though container images are
generally fairly small, the bandwidth can add up. Despite these negatives, a
single registry solution can be the appropriate answer for small-scale
applications running in only a few global regions. It certainly is simpler to set up
than full-scale image replication.

https://acr.io

If you cannot use cloud-provided geo-replication and you need to replicate your
image, you are on your own to craft a solution for image replication. To
implement such a service, you have two options. The first is to use geographic
names for each image registry (e.g., us.my-registry.io, eu.my-registry.io,
etc.). The advantage of this approach is that it is simple to set up and manage.
Each registry is entirely independent, and you can simply push to all registries at
the end of your CI/CD pipeline. The downside is that each cluster will require a
slightly different configuration to pull the image from the nearest geographic
location. However, given that you likely will have geographic differences in
your application configurations anyway, this downside is relatively easy to
manage and likely already present in your environment.

Parameterizing Your Deployment

When you have replicated your image everywhere, you need to parameterize
your deployments for different global locations. Whenever you are deploying to
a variety of different regions, there are bound to be differences in the
configuration of your application in the different regions. For example, if you
don’t have a geo-replicated registry, you might need to tweak the image name
for different regions, but even if you have a geo-replicated image, it’s likely that
different geographic locations will present different load on your application,
and thus the size (e.g., the number of replicas) as well as other configuration can
be different between regions. Managing this complexity in a manner that doesn’t
incur undue toil is key to successfully managing a worldwide application.

The first thing to consider is how to organize your different configurations on
disk. A common way to achieve this is by using a different directory for each
global region. Given these directories, it might be tempting to simply copy the
same configurations into each directory, but doing this is guaranteed to lead to
drift and changes between configurations in which some regions are modified
and other regions are forgotten. Instead, using a template-based approach is the
best idea so that most of the configuration is retained in a single template that is
shared by all regions, and then parameters are applied to that template to produce
the region-specific templates. Helm is a commonly used tool for this sort of
templating (for details, see Chapter 2).

https://helm.sh

Load-Balancing Traffic Around the World

Now that your application is running around the world, the next step is to
determine how to direct traffic to the application. In general, you want to take
advantage of geographic proximity to ensure low-latency access to your service.
But you also want to failover across geographic regions in case of an outage or
any other source of service failure. Correctly setting up the balancing of traffic to
your various regional deployments is key to the establishment of both a
performant and reliable system.

Let’s begin with the assumption that you have a single hostname that you want
to serve as your service. For example, myapp.myco.com. One initial decision that
you need to make is whether you want to use the Domain Name System (DNS)
protocol to implement load balancing across your regional endpoints. If you use
DNS for load balancing, the IP address that is returned when a user makes a
DNS query to myapp.myco.com is based on both the location of the user
accessing your service as well as the current availability of your service.

Reliably Rolling Out Software Around the World

After you have templatized your application so that you have proper
configurations for each region, the next important problem is how to deploy
these configurations around the world. It might be tempting to simultaneously
deploy your application worldwide so that you can efficiently and quickly iterate
your application, but this, although Agile, is an approach that can easily leave
you with a global outage. Instead, for most production applications, a more
carefully staged approach to rolling out your software around the world is more
appropriate. When combined with things like global load balancing, these
approaches can maintain high availability even in the face of major application
failures.

Overall, when approaching the problem of a global rollout, the goal is to roll out
software as quickly as possible, while simultaneously detecting issues quickly—
ideally before they affect any other users. Let’s assume that by the time you are
performing a global rollout, your application has already passed basic functional
and load testing. Before a particular image (or images) is certified for a global
rollout, it should have gone through enough testing that you believe the

application is operating correctly. It iss important to note that this does not mean
that your application is operating correctly. Though testing catches many
problems, in the real world, application problems are often first noticed when
they are rolled out to production traffic. This is because the true nature of
production traffic is often difficult to simulate with perfect fidelity. For example,
you might test with only English language inputs, whereas in the real world, you
see input from a variety of languages. Or your set of test inputs is not
comprehensive for the real-world data your application ingests. Of course, any
time that you do see a failure in production that wasn’t caught by testing, it is a
strong indicator that you need to extend and expand your testing. Nonetheless, it
is still true that many problems are caught during a production rollout.

With this in mind, each region that you roll out to is an opportunity to discover a
new problem. And, because the region is a production region, it is also a
potential outage to which you will need to react. These factors combine to set the
stage for how you should approach regional rollouts.

Pre-Rollout Validation

Before you even consider rolling out a particular version of your software
around the world, it’s critically important to validate that software in some sort
of synthetic testing environment. If you have your CD pipeline set up correctly,
all code prior to a particular release build will have undergone some form of unit
testing, and possibly limited integration testing. However, even with this testing
in place, it’s important to consider two other sorts of tests for a release before it
begins its journey through the release pipeline. The first is complete integration
testing. This means that you assemble the entirety of your stack into a full-scale
deployment of your application but without any real-world traffic. This complete
stack generally will include either a copy of your production data or simulated
data on the same size and scale as your true production data. If in the real world,
the data in your application is 500 GB, it’s critical that in preproduction testing
your dataset is roughly the same size (and possibly even literally the same
dataset).

Generally speaking, this is the most difficult part of setting up a complete
integration test environment. Often, production data is really present only in
production, and generating a synthetic dataset of the same size and scale is quite

difficult. Because of this complexity, setting up a realistic integration testing
dataset is a great example of a task that it pays to do early on in the development
of an application. If you set up a synthetic copy of your dataset early, when the
dataset itself is quite small, your integration test data grows gradually at the
same pace as your production data. This is generally significantly more
manageable than if you attempt to duplicate your production data when you are
already at scale.

Sadly, many people don’t realize that they need a copy of their data until they are
already at a large scale and the task is difficult. In such cases it might be possible
to deploy a read/write-deflecting layer in front of your production data store.
Obviously, you don’t want your integration tests writing to production data, but
it is often possible to set up a proxy in front of your production data store that
reads from production but stores writes in a side table that is also consulted on
subsequent reads.

Regardless of how you manage to set up your integration testing environment,
the goal is the same: to validate that your application behaves as expected when
given a series of test inputs and interactions. There are a variety of ways to
define and execute these tests—from the most manual, a worksheet of tests and
human effort (not recommended because it is fairly error prone), through tests
that simulate browsers and user interactions, like clicks and so forth. In the
middle are tests that probe RESTful APIs but don’t necessarily test the web Ul
built on top of those APIs. Regardless of how you define your integration tests,
the goal should be the same: an automated test suite that validates the correct
behavior of your application in response to a complete set of real-world inputs.
For simple applications it may be possible to perform this validation in premerge
testing, but for most large-scale real-world applications, a complete integration
environment is required.

Integration testing will validate the correct operation of your application, but you
should also load-test the application. It is one thing to demonstrate that the
application behaves correctly, it is quite another to demonstrate that it stands up
to real-world load. In any reasonably high-scale system, a significant regression
in performance—for example, a 20% increase in request latency—has a
significant impact on the UX of the application and, in addition to frustrating
users, can cause an application to completely fail. Thus, it is critical to ensure

that such performance regressions do not happen in production.

Like integration testing, identifying the correct way to load-test an application
can be a complex proposition; after all, it requires that you generate a load
similar to production traffic but in a synthetic and reproduceable way. One of the
easiest ways to do this is to simply replay the logs of traffic from a real-world
production system. Doing this can be a great way to perform a load-test whose
characteristics match what your application will experience when deployed.
However, using replay isn’t always foolproof. For example, if your logs are old,
and your application or dataset has changed, it’s possible that the performance
on old, replayed logs will be different that the performance on fresh traffic.
Additionally, if you have real-world dependencies that you haven’t mocked, it’s
possible that the old traffic will be invalid when sent over to the dependencies
(e.g., the data might no longer exist).

Because of these challenges, many systems, even critical systems, are developed
for a long time without a load test. Like modeling your production data, this is a
clear example of something that is easier to maintain if you start earlier. If you
build a load-test when your application has only a handful of dependencies, and
improve and iterate the load-test as you adapt your application, you will have a
far easier time than if you attempt to retrofit load-testing onto an existing large-
scale application.

Assuming that you have crafted a load test, the next question is the metrics to
watch when load-testing your application. The obvious ones are requests per
second and request latency because those are clearly the user-facing metrics.

When measuring latency, it’s important to realize that this is actually a
distribution, and you need to measure both the mean latency as well as the
outlier percentiles (like the 90th and 99th percentile) since they represent the
“worst” UX of your application. Problems with very long latencies can be
hidden if you just look at the averages, but if 10% of your users are having a bad
time, it can have a significant impact on the success of your product.

In addition, it’s worth looking at the resource usage (CPU, memory, network,
disk) of the application under load test. Though these metrics do not directly
contribute to the UX, large changes in resource usage for your application should
be identified and understood in preproduction testing. If your application is
suddenly consuming twice as much memory, it’s something you will want to

investigate, even if you pass your load test, because eventually such significant
resource growth will affect the quality and availability of your application.
Depending on the circumstances, you might continue bringing a release to
production, but at the same time, you need to understand why the resource
footprint of your application is changing.

Canary Region

When your application appears to be operating correctly, the first step should be
a canary region. A canary region is a deployment that receives real-world traffic
from people and teams who want to validate your release. These can be internal
teams that depend on your service, or they might be external customers who are
using your service. Canaries exist to give a team some early warning about
changes that you are about to roll out that might break them. No matter how
good your integration and load testing, it’s always possible that a bug will slip
through that isn’t covered by your tests, but is critical to some user or customer.
In such cases, it is much better to catch these issues in a space where everyone
using or deploying against the service understands that there is a higher
probability of failure. This is what the canary region is.

Canaries must be treated as a production region in terms of monitoring, scale,
features, and so on. However, because it is the first stop on the release process, it
is also the location most likely to see a broken release. This is OK; in fact it is
precisely the point. Your customers will knowingly use a canary for lower-risk
use cases (e.g., development or internal users) so that they can get an early
indication of any breaking changes that you might be rolling out as part of a
release.

Because the goal of a canary is to get early feedback on a release, it is a good
idea to leave the release in the canary region for a few days. This enables a broad
collection of customers to access it before you move on to additional regions.
The need for this length of time is that sometimes a bug is probabilistic (e.g., 1%
of requests) or it manifests only in an edge case that takes some time to present
itself. It might not even be severe enough to trigger automated alerts, but there
might be a problem in business logic that is visible only via customer
interactions.

Identifying Region Types

When you begin thinking about rolling out your software across the world, it’s
important to think about the different characteristics of your different regions.
After you begin rolling out software to production regions, you need to run it
through integration testing as well as initial canary testing. This means that any
issues you find will be issues that did not manifest in either of these settings.
Think about your different regions. Do some get more traffic than others? Are
some accessed in a different way? An example of a difference might be that in
the developing world, traffic is more likely to come from mobile web browsers.
Thus, a region that is geographically close to more developing countries might
have significantly more mobile traffic than your test or canary regions.

Another example might be input language. Regions in non-English speaking
areas of the world might send more Unicode characters that could manifest bugs
in string or character handling. If you are building an API-driven service, some
APIs might be more popular in some regions versus others. All of these things
are examples of differences that might be present in your application and might
be different than your canary traffic. Each of these differences is a possible
source of a production incident. Build a table of different characteristics that you
think are important. Identifying these characteristics will help you plan your
global rollout.

Constructing a Global Rollout

Having identified the characteristics of your regions, you want to identify a plan
for rolling out to all regions. Obviously, you want to minimize the impact of a
production outage, so a great first region to start with is a region that looks
mostly like your canary and has light user traffic. Such a region is very unlikely
to have problems, but if they do occur, the impact is also smaller because the
region receives less traffic.

With a successful rollout to the first production region, you need to decide how
long to wait before moving on to the next region. The reason for waiting is not to
artificially delay your release; rather, it’s to wait long enough for a fire to send
up smoke. This time-to-smoke period is a measure of generally how long it takes
between a rollout completing and your monitoring seeing some sign of a
problem. Clearly if a rollout contains a problem, the minute the rollout

completes, the problem is present in your infrastructure. But even though it is
present, it can take some time to manifest. For example, a memory leak might
take an hour or more before the impact of the leaked memory is clearly
discernible in monitoring or is affecting users. The time-to-smoke is the
probability distribution that indicates how long you should wait in order to have
a strong probability that your release is operating correctly. Generally speaking,
a decent rule of thumb is doubling the average time it takes for a problem to
manifest.

If, over the past six months, each outage took an average of an hour to show up,
waiting two hours between regional rollouts gives you a decent probability that
your release is successful. If you want to derive richer (and more meaningful)
statistics based on the history of your application, you can estimate this time-to-
smoke even more closely.

Having successfully rolled out to a canary-like, low-traffic region, it’s time to
roll out to a canary-like, high-traffic region. This is a region where the input data
looks like that in your canary, but it receives a large volume of traffic. Because
you successfully rolled out to a similar looking region with lower traffic, at this
point the only thing you are testing is your application’s ability to scale. If you
safely perform this rollout, you can have strong confidence in the quality of your
release.

After you have rolled out to a high-traffic region receiving canary-like traffic,
you should follow the same pattern for other potential differences in traffic. For
example, you might roll out to a low-traffic region in Asia or Europe next. At
this point, it might be tempting to accelerate your rollout, but it is critically
important to roll out only to a single region that represents any significant
change in either input or load to your release. After you are confident that you
have tested all of the potential variability in the production input to your
application, you then can start parallizing the release to speed it up with strong
confidence that it is operating correctly and your rollout can complete
successfully.

When Something Goes Wrong

So far, we have seen the pieces that go into setting up a worldwide rollout for

your software system, and we have seen the ways that you can structure this
rollout to minimize the chances that something goes wrong. But what do you do
when something actually does go wrong? All emergency responders know that
in the heat and panic of a crisis, your brain is significantly stressed and it is
much more difficult to remember even the simplest processes. Add to this
pressure the knowledge that when an outage happens, everyone in the company
from the CEO down is going to be feverishly waiting for the “all clear” signal,
and you can see how easy it is to make a mistake under this pressure.
Additionally, in such circumstances, a simple mistake, like forgetting a particular
step in a recovery process, can make a bad situation an order of magnitude
worse.

For all of these reasons, it is critical that you are capable of responding quickly,
calmly, and correctly when a problem happens with a rollout. To ensure that
everything necessary is done, and done in the correct order, it pays to have a
clear checklist of tasks organized in the order in which they are to be executed as
well as the expected output for each step. Write down every step, no matter how
obvious it might seem. In the heat of the moment, even the most obvious and
easy steps can be the ones that are forgotten and accidentally skipped.

The way that other first responders ensure a correct response in a high-stress
situation is to practice that response without the stress of the emergency. The
same practice applies to all the activities that you might take in response to a
problem with your rollout. You begin by identifying all of the steps needed to
respond to an issue and perform a rollback. Ideally, the first response is to “stop
the bleeding,” to move user traffic away from the impacted region(s) and into a
region where the rollout hasn’t happened and your system is operating correctly.
This is the first thing you should practice. Can you successfully direct traffic
away from a region? How long does it take?

The first time you attempt to move traffic using a DNS-based traffic load
balancer, you will realize just how long and in how many ways our computers
cache DNS entries. It can take nearly a day to fully drain traffic away from a
region using a DNS-based traffic shaper. Regardless of how your first attempt to
drain traffic goes, take notes. What worked well? What went poorly? Given this
data, set a goal for how long a traffic drain should take in terms of time to drain a
percentage of traffic, for example, being able to drain 99% of traffic in less than

10 minutes. Keep practicing until you can achieve that goal. You might need to
make architectural changes to make this possible. You might need to add
automation so that humans aren’t cutting and pasting commands. Regardless of
necessary changes, practice will ensure that you are more capable at responding
to an incident and that you will learn where your system design needs to be
improved.

The same sort of practice applies to every action that you might take on your
system. Practice a full-scale data recovery. Practice a global rollback of your
system to a previous version. Set goals for the length of time it should take. Note
any places where you made mistakes, and add validation and automation to
eliminate the possibility of mistakes. Achieving your incident reaction goals in
practice gives you confidence that you will be able to respond correctly in a real
incident. But just like every emergency responder continues to train and learn,
you too need to set up a regular cadence of practice to ensure that everyone on a
team stays well versed in the proper responses and (perhaps more important) that
your responses stay up to date as your system changes.

Worldwide Rollout Best Practices

¢ Distribute each image around the world. A successful rollout depends
on the release bits (binaries, images, etc.) being nearby to where they
will be used. This also ensures reliability of the rollout in the presence
of networking slowdowns or irregularities. Geographic distribution
should be a part of your automated release pipeline for guaranteed
consistency.

e Shift as much of your testing as possible to the left by having as much
extensive integration and replay testing of your application as possible.
You want to start a rollout only with a release that you strongly believe
to be correct.

e Begin a release in a canary region, which is a preproduction
environment in which other teams or large customers can validate their
use of your service before you begin a larger-scale rollout.

o Identify different characteristics of the regions where you are rolling

out. Each difference can be one that causes a failure and a full or partial
outage. Try to roll out to low-risk regions first.

e Document and practice your response to any problem or process (e.g., a
rollback) that you might encounter. Trying to remember what to do in
the heat of the moment is a recipe for forgetting something and making
a bad problem worse.

Summary

It might seem unlikely today, but most of us will end up running a worldwide
scale system sometime during our careers. This chapter described how you can
gradually build and iterate your system to be a truly global design. It also
discussed how you can set up your rollout to ensure minimal downtime of the
system while it is being updated. Finally, we covered setting up and practicing
the processes and procedures necessary to react when (note that we didn’t say
“if”) something goes wrong.

Chapter 8. Resource Management

In this chapter, we focus on the best practices for managing and optimizing
Kubernetes resources. We discuss workload scheduling, cluster management,
pod resource management, namespace management, and scaling applications.
We also dive into some of the advanced scheduling techniques that Kubernetes
provides through affinity, anti-affinity, taints, tolerations, and nodeSelectors.

We show you how to implement resource limits, resource requests, pod Quality
of Service, PodDisruptionBudgets, LimitRangers, and anti-affinity policies.

Kubernetes Scheduler

The Kubernetes scheduler is one of the main components that is hosted in the
control plane. The scheduler allows Kubernetes to make placement decisions for
pods deployed to the cluster. It deals with optimization of resources based on
constraints of the cluster as well as user-specified constraints. It uses a scoring
algorithm that is based on predicates and priorities.

Predicates

The first function Kubernetes uses to make a scheduling decision is the predicate
function, which determines what nodes the pods can be scheduled on. It implies
a hard constraint, so it returns a value of true or false. An example would be
when a pod requests 4 GB of memory and a node cannot satisfy this
requirement. The node would return a false value and would be removed from
viable nodes for the pod to be scheduled to. Another example would be if the
node is set to unschedulable; it would then be removed from the scheduling
decision.

The scheduler checks the predicates based on order of restrictiveness and
complexity. As of this writing, the following are the predicates that the scheduler
checks for:

CheckNodeConditionPred,

CheckNodeUnschedulablePred,
GeneralPred,

HostNamePred,
PodFitsHostPortsPred,
MatchNodeSelectorPred,
PodFitsResourcesPred,
NoDiskConflictPred,
PodToleratesNodeTaintsPred,
PodToleratesNodeNoExecuteTaintsPred,
CheckNodelLabelPresencePred,
CheckServiceAffinityPred,
MaxEBSVolumeCountPred,
MaxGCEPDVolumeCountPred,
MaxCSIVolumeCountPred,
MaxAzureDiskVolumeCountPred,
MaxCinderVolumeCountPred,
CheckVolumeBindingPred,
NoVolumeZoneConflictPred,
CheckNodeMemoryPressurePred,
CheckNodePIDPressurePred,
CheckNodeDiskPressurePred,
MatchInterPodAffinityPred

Priorities

Whereas predicates indicate a true or false value and dismiss a node for

scheduling, the priority value ranks all of the valid nodes based on a relative

value. The following priorities are scored for nodes:

EqualPriority
MostRequestedPriority
RequestedToCapacityRatioPriority
SelectorSpreadPriority
ServiceSpreadingPriority
InterPodAffinityPriority
LeastRequestedPriority
BalancedResourceAllocation
NodePreferAvoidPodsPriority
NodeAffinityPriority
TaintTolerationPriority
ImagelocalityPriority
ResourceLimitsPriority

The scores will be added, and then a node is given its final score to indicate its
priority. For example, if a pod requires 600 millicores and there are two nodes,
one with 900 millicores available and one with 1,800 millicores, the node with

1,800 millicores available will have a higher priority.

If nodes are returned with the same priority, the scheduler will use a
selectHost() function, which selects a node in a round-robin fashion.

Advanced Scheduling Techniques

For most cases, Kubernetes does a good job of optimally scheduling pods for
you. It takes into account pods that are placed only on nodes that have sufficient
resources. It also tries to spread pods from the same ReplicaSet across nodes to
increase availability and will balance resource utilization. When this is not good
enough, Kubernetes gives you the flexibility to influence how resources are
scheduled. For example, you might want to schedule pods across availability
zones to mitigate a zonal failure causing downtime to your application. You
might also want to colocate pods to a specific host for performance benefits.

Pod Affinity and Anti-Affinity

Pod affinity and anti-affinity let you set rules to place pods relative to other pods.
These rules allow you to modify the scheduling behavior and override the
scheduler’s placement decisions.

For example, an anti-affinity rule would allow you to spread pods from a
ReplicaSet across multiple datacenter zones. It does this by utilizing keylabels
set on the pods. Setting the key/value pairs instructs the scheduler to schedule
the pods on the same node (affinity) or prevent the pods from scheduling on the
same nodes (anti-affinity).

Following is an example of setting a pod anti-affinity rule:

apiVersion: apps/vi
kind: Deployment
metadata:
name: nginx
spec:
selector:
matchlLabels:
app: frontend
replicas: 4
template:

metadata:
labels:
app: frontend
spec:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:

- key: app

operator: In

values:

- frontend

topologyKey: "kubernetes.io/hostname"
containers:
- name: nginx
image: nginx:alpine

This manifest of an NGINX deployment has four replicas and the selector label
app=frontend. The deployment has a PodAntiAffinity stanza configured that
will ensure that the scheduler does not colocate replicas on a single node. This
ensures that if a node fails, there are still enough replicas of NGINX to serve
data from its cache.

nodeSelector

A nodeSelector is the easiest way to schedule pods to a particular node. It uses
label selectors with key/value pairs to make the scheduling decision. For
example, you might want to schedule pods to a specific node that has specialized
hardware, such as a GPU. You might ask, “Can’t I do this with a node taint?”
The answer is, yes, you can. The difference is that you use a nodeSelector when
you want to request a GPU-enabled node, whereas a taint reserves a node for
only GPU workloads. You can use both node taints and nodeSelectors together
to reserve the nodes for only GPU workloads, and use the nodeSelector to
automatically select a node with a GPU.

Following is an example of labeling a node and using a nodeSelector in the pod
specification:

kubectl label node <node_name> disktype=ssd

Now, let’s create a pod specification with a nodeSelector key/value of
disktype: ssd:

apiVersion: vi
kind: Pod
metadata:

name: redis

labels:
env: prod

spec:

containers:

- name: frontend
image: nginx:alpine
imagePullPolicy: IfNotPresent

nodeSelector:
disktype: ssd

Using the nodeSelector schedules the pod to only nodes that have the label
disktype=ssd:

Taints and Tolerations

Taints are used on nodes to repel pods from being scheduled on them. But isn’t
that what anti-affinity is for? Yes, but taints take a different approach than pod
anti-affinity and serve a different use case. For example, you might have pods
that require a specific performance profile, and you do not want to schedule any
other pods to the specific node. Taints work in conjunction with tolerations,
which allow you to override tainted nodes. The combination of the two gives
you fine-grained control over anti-affinity rules.

In general, you will use taints and tolerations for the following use cases:
e Specialized node hardware
¢ Dedicated node resources
¢ Avoiding degraded nodes
There are multiple taint types that affect scheduling and running containers:

NoSchedule

A hard taint that prevents scheduling on the node

PreferNoSchedule

Schedules only if pods cannot be scheduled on other nodes

NoEXxecute

Evicts already-running pods on the node

NodeCondition
Taints a node if it meets a specific condition

Figure 8-1 shows an example of a node that is tainted with
gpu=true:NoSchedule. Pod Spec 1 has a toleration key with gpu, so it will be

scheduled to the tainted node. Pod Spec 2 has a toleration key of no-gpu, so it
will not be scheduled to the node.

Pod Spec 1

tolerations: Scheduled
- key: "gpu”
operator: "Equal”
value: "true”

affect: "NoSchedule”

Kubernetes Node

Taints:
Pod Spec 2 gpu=true:noSchedule

tolerations: Not Scheduled
- key: "not-gpu” >
operator: "Equal”
value: "true”
affect: "NoSchedule”

Figure 8-1. Kubernetes taints and tolerations

When a pod cannot be scheduled due to tainted nodes, you’ll see an error
message like the following:

Warning: FailedScheduling 10s (x10 over 2m) default-scheduler 0/2 nodes are
available: node(s) had taints that the pod did not tolerate.

Now that we’ve seen how we can manually add taints to affect scheduling, there
is also the powerful concept of taint-based eviction, which allows the eviction of
running pods. For example, if a node becomes unhealthy due to a bad disk drive,
the taint-based eviction can reschedule the pods on the host to another healthy
node in the cluster.

Pod Resource Management

One of the most important aspects of managing applications in Kubernetes is
appropriately managing pod resources. Managing pod resources consists of
managing CPU and memory to optimize the overall utilization of your
Kubernetes cluster. You can manage these resources at the container level and at
the namespace level. There are other resources, such as network and storage, but
Kubernetes doesn’t yet have a way to set requests and limits for those resources.

For the scheduler to optimize resources and make intelligent placement
decisions, it needs to understand the requirements of an application. As an
example, if a container (application) needs a minimum of 2 GB to perform, we
need to define this in our pod specification, so the scheduler knows that the
container requires 2 GB of memory on the host to which it schedules the
container.

Resource Request

A Kubernetes resource request defines that a container requires X amount of
CPU or memory to be scheduled. If you were to specify in the pod specification
that a container requires 8 GB for its resource request and all your nodes have
7.5 GB of memory, the pod would not be scheduled. If the pod is not able to be
scheduled, it will go into a pending state until the required resources are
available.

So let’s take a look at how this works in our cluster.

To determine the available free resource in your cluster, use kubectl top:
kubectl top nodes

The output should look like this (the memory size might be different for your

cluster):

NAME CPU(cores) CPU% MEMORY (bytes) MEMORY%
aks-nodepool1-14849087-0 524m 27% 7500M1 33%
aks-nodepool1-14849087-1 468m 24% 3505M1 27%
aks-nodepool1-14849087-2 406m 21% 3051M1 24%
aks-nodepool1-14849087-3 441m 22% 2812M1 22%

As this example shows, the largest amount of memory available to a host is
7,500 Mi, so let’s schedule a pod that requests 8,000 Mi of memory:

apiVersion: vi
kind: Pod
metadata:

name: memory-request

spec:

containers:

- name: memory-request
image: polinux/stress
resources:

requests:
memory: "8000Mi1"

Notice that the pod will stay pending, and if you look at the events on the pods,
you’ll see that no nodes are avalaible to schedule the pods:

kubectl describe pods memory-request
The output of the event should look like this:

Events:
Type Reason Age From Message
Warning FailedScheduling 27s (x2 over 27s) default-scheduler 0/3 nodes are
available: 3 Insufficient memory.

Resource Limits and Pod Quality of Service

Kubernetes resource limits define the maximum CPU or memory that a pod is
given. When you specify limits for CPU and memory, each takes a different
action when it reaches the specified limit. With CPU limits, the container is
throttled from using more than its specified limit. With memory limits, the pod is
restarted if it reaches its limit. The pod might be restarted on the same host or a

different host within the cluster.

Specifying limits for containers is a good practice to ensure that applications are
allotted their fair share of resources within the cluster:

apiVersion: vi
kind: Pod
metadata:

name: cpu-demo

namespace: cpu-example

spec:

containers:

- name: frontend
image: nginx:alpine
resources:

limits:
cpu: "1"
requests:
cpu: "0.5"

apiVersion: vi
kind: Pod
metadata:
name: qos-demo
namespace: qos-example
spec:
containers:
- name: qos-demo-ctr
image: nginx:alpine

resources:
limits:
memory: "200M1"
cpu: "700m"
requests:
memory: "200Mi"
cpu: "700m"

When a pod is created, it’s assigned one of the following Quality of Service
(QoS) classes:

e Guaranteed
e Burstable

e Best effort

The pod is assigned a QoS of guaranteed when CPU and memory both have
request and limits that match. A burstable QoS is when the limits are set higher
than the request, meaning that the container is guaranteed its request, but it can
also burst to the limit set for the container. A pod is assigned best effort when no
request or limits are set for the containers in the pod.

Figure 8-2 depicts how QoS is assigned to pods.

Guranteed Burstable Best Effort
Limit
Limit 200m
100m

No Limits
or
Requests

Request

Request 150m
100m

Figure 8-2. Kubernetes QoS

NOTE

With guaranteed QoS, if you have multiple containers in your pod, you’ll need to have
memory request and limits set for each container, and you’ll also need CPU request and limits
set for each container. If the request and limits are not set for all containers, it will not be
assigned guaranteed QoS.

PodDisruptionBudgets

At some point in time, Kubernetes might need to evict pods from a host. There
are two types of evictions: voluntary and involuntary disruptions. Involuntary
disruptions can be caused by hardware failure, network partitions, kernel panics,
or a node being out of resources. Voluntary evictions can be caused by
performing maintenance on the cluster, the Cluster Autoscaler deallocating

nodes, or updating pod templates. To minimize the impact to your application,
you can set a PodDisruptionBudget to ensure uptime of the application when
pods need to be evicted. A PodDisruptionBudget allows you to set a policy on
the minimum available and maximum unavailable pods during voluntary
eviction events. An example of a voluntary eviction would be when draining a
node to perform maintenance on the node.

For example, you might specify that no more than 20% of pods belonging to
your application can be down at a given time. You could also specify this policy
in terms of X number of replicas that must always be available.

Minimum available

In the following example, we set a PodDisruptionBudget to handle a minimum
available to 5 for app: front-end.

apiVersion: policy/vibetal
kind: PodDisruptionBudget
metadata:

name: frontend-pdb
spec:

minAvailable: 5

selector:

matchLabels:
app: frontend

In this example, the PodDisruptionBudget specifies that for the frontend app
there must always be five replica pods available at any given time. In this
scenario, an eviction can evict as many pods as it wants, as long as five are
available.

Maximum unavailable

In the next example, we set a PodDisruptionBudget to handle a maximum
unavailable to 10 replicas for the frontend app:

apiVersion: policy/vibetal
kind: PodDisruptionBudget
metadata:

name: frontend-pdb
spec:

maxUnavailable: 20%

selector:
matchLabels:
app: frontend

In this example, the PodDisruptionBudget specifies that no more than 20% of
replica pods can be unavailable at any given time. In this scenario, an eviction
can evict a maximum of 20% of pods during a voluntary disruption.

It’s essential that when designing your Kubernetes cluster you think about the
sizing of the cluster resources so that you can handle a number of failed nodes.
For example, if you have a four-node cluster and one node fails, you will be
losing a quarter of your cluster capacity.

NOTE

When specifying a pod disruption budget as a percentage, it might not correlate to a specific
number of pods. For example, if your application has seven pods and you specify
maxAvailable to 50%, it’s not clear whether that is three or four pods. In this case, Kubernetes
rounds up to the closest integer, so the maxAvailable would be four pods.

Managing Resources by Using Namespaces

Namespaces in Kubernetes give you a nice logical separation of resources
deployed to a cluster. This allows you to set resource quotas per namespace,
Role-Based Access Control (RBAC) per namespace, and also network policies
per namespace. It gives you soft multitenancy features, so you can separate out
workloads in a cluster without dedicating specific infrastructure to a team or
application. This allows you to get the most out of your cluster resource while
also maintaining a logical form of separation.

For example, you could create a namespace per team and give each team a quota
on the number of resources that it can utilize, such as CPU and memory.

When designing how you want to configure a namespace, you should think
about how you want to control access to a specific set of applications. If you
have multiple teams that will be using a single cluster, it is typically best to
allocate a namespace to each team. If the cluster is dedicated to only one team, it
might make sense to allocate a namespace for each service deployed to the

cluster. There’s no single solution to this; your team organization and
responsibilities will drive the design.

After deploying a Kubernetes cluster, you’ll see the following namespaces in
your cluster:

kube-system
Kubernetes internal components are deployed here, such as coredns, kube-
proxy, and metrics-server.

default
This is the default namespace that is used when you don’t specify a
namespace in the resource object.

kube-public

Used for anonymous and unauthenticated content, and reserved for system
usage.

You’ll want to avoid using the default namespace because it can make it really
easy to make mistakes when managing resources within your cluster.

When working with namespaces, you need to use the -namespace flag, or -n for

short, when working with kubect1:

kubectl create ns team-1

kubectl get pods --namespace team-1

You can also set your kubectl context to a specific namespace, which is useful

so that you don’t need to add the -namespace flag with every command. You
can set your namespace context by using the following command:

kubectl config set-context my-context --namespace=team-1

TIP

When dealing with multiple namespaces and clusters, it can be a pain to set different
namespaces and cluster context. We’ve found that using kubens and kubectx can help make it
easy to switch between these different namespaces and contexts.

https://github.com/ahmetb/kubectx
https://github.com/ahmetb/kubectx

ResourceQuota

When multiple teams or applications share a single cluster, it’s important to set
up ResourceQuotas on your namespaces. ResourceQuotas allow you to divvy
up the cluster in logical units so that no single namespace can consume more
than its share of resources in the cluster. The following resources can have a
quota set for them:

e Compute resources
m cpu: Sum of CPU requests cannot exceed this amount
m limits.cpu: Sum of CPU limits cannot exceed this amount
= memory: Sum of memory requests cannot exceed this amount
e Storage resources

m requests.storage: Sum of storage requests cannot exceed
this value

m persistentvolumeclaims: The total number of
PersistentVolume claims that can exist in the namespace

m storageclass.request: Volume claims associated with the
specified storage-class cannot exceed this value

m storageclass.pvc: The total number of PersistentVolume
claims that can exist in the namespace

¢ Object count quotas (only an example set)
® count/pvc
® count/services
= count/deployments

m count/replicasets

As you can see from this list, Kubernetes gives you fine-grained control over
how you carve up resource quotas per namespace. This allows you to more
efficiently operate resource usage in a multitenant cluster.

Let’s see how these quotas actually work by setting up a quota on a namespace.
Apply the following YAML file to the team-1 namespace:

apiVersion: vl
kind: ResourceQuota
metadata:
name: mem-cpu-demo
namespace: team-1
spec:
hard:
requests.cpu: "1"
requests.memory: 1Gi
limits.cpu: "2"
limits.memory: 2Gi
persistentvolumeclaims: "5"
requests.storage: "10Gi

kubectl apply quota.yaml -n team-1

This example sets quotas for CPU, memory, and storage on the team-1
namespace.

Now let’s try to deploy an application to see how the resource quotas affect the

deployment:

kubectl run nginx-quotatest --image=nginx --restart=Never --replicas=1 --port=80 --
requests="cpu=500m,memory=4Gi' --limits='cpu=500m,memory=4Gi' -n team-1

This deployment will fail with the following error due to the memory quota
exceeding 2G1 of memory:

Error from server (Forbidden): pods "nginx-quotatest" is forbidden: exceeded quota:
mem-cpu-demo

As this example demonstrates, setting resource quotas can let you deny
deployment of resources based on policies you set for the namespace.

LimitRange

We’ve discussed setting request and limits at the container level, but what
happens if the user forgets to set these in the pod specification? Kubernetes
provides an admission controller that allows you to automatically set these when
there are none indicated in the specification.

First, create a namespace to work with quotas and LimitRanges:
kubectl create ns team-1
Apply a LimitRange to the namespace to apply defaultRequest in limits:

apiVersion: vl
kind: LimitRange
metadata:
name: team-1-limit-range
spec:
limits:
- default:
memory: 512Mi
defaultRequest:
memory: 256Mi
type: Container

Save this to limitranger.yaml and then run kubectl apply:
kubectl apply -f limitranger.yaml -n team-1
Verify that the LimitRange applies default limits and requests:
kubectl run team-1-pod --image=nginx -n team-1
Next, let’s describe the pod to see what requests and limits were set on it:
kubectl describe pod team-1-pod -n team-1
You should see the following requests and limits set on the pod specification:

Limits:
memory: 512Mi

Requests:
memory: 256Mi

It’s important to use LimitRange when using ResourceQuotas, because if no
request or limits are set in the specification, the deployment will be rejected.

Cluster Scaling

One of the first decisions you need to make when deploying a cluster is the
instance size you’ll want to use within your cluster. This becomes more of an art
than science, especially when you’re mixing workloads in a single cluster. You’ll
first want to identify what a good starting point is for the cluster; aiming for a
good balance of CPU and memory is one option. After you’ve decided on a
sensible size for the cluster, you can use a couple of Kubernetes core primitives
to manage the scaling of your cluster.

Manual scaling

Kubernetes makes it easy to scale your cluster, especially if you’re using tools
like Kops or a managed Kubernetes offering. Scaling your cluster manually is
typically just choosing a new number of nodes, and the service will add the new
nodes to your cluster.

These tools also allow you to create node pools, which allows you to add new
instance types to an already running cluster. This becomes very useful when
running mixed workloads within a single cluster. For example, one workload
might be more CPU driven, whereas the other workloads might be memory-
driven applications. Node pools allow you to mix multiple instance types within
a single cluster.

But perhaps you don’t want to manually do this and want it to autoscale. There
are things that you need to take into consideration with cluster autoscaling, and
we have found that most users are better off starting with just manually scaling
their nodes proactively when resources are needed. If your workloads are highly
variable, cluster autoscaling can be very useful.

Cluster autoscaling

Kubernetes provides a Cluster Autoscaler add-on that allows you to set the

minimum nodes available to a cluster and also the maximum number of nodes to
which your cluster can scale. The Cluster Autoscaler bases its scale decision on
when a pod goes pending. For example, if the Kubernetes scheduler tries to
schedule a pod with a memory request of 4,000 Mib and the cluster has only
2,000 Mib available, the pod will go into a pending state. After the pod is
pending, the Cluster Autoscaler will add a node to the cluster. As soon as the
new node is added to the cluster, the pending pod is scheduled to the node. The
downside of the Cluster Autoscaler is that a new node is added only before a pod
goes pending, so your workload may end up waiting for a new node to come
online when it is scheduled. As of Kubernetes v1.15, the Cluster Autoscaler
doesn’t support scaling based on custom metrics.

The Cluster Autoscaler can also reduce the size of the cluster after resources are
no longer needed. When the resources are no longer needed, it will drain the
node and reschedule the pods to new nodes in the cluster. You’ll want to use a
PodDisruptionBudget to ensure that you don’t negatively affect your
application when it performs its drain operation to remove the node from the
cluster.

Application Scaling

Kubernetes provides multiple ways to scale applications in your cluster. You can
scale an application by manually changing the number of replicas within a
deployment. You can also change the ReplicaSet or replication controller, but we
don’t recommend managing your applications through those implementations.
Manual scaling is perfectly fine for workloads that are static or when you know
the times that the workload spikes, but for workloads that experience sudden
spikes or workloads that are not static, manual scaling is not ideal for the
application. Happily, Kubernetes also provides a Horizontal Pod Autoscaler
(HPA) to automatically scale workloads for you.

Let’s first take a look at how you can manually scale a deployment by applying
the following Deployment manifest:

apiVersion: extensions/vibetal
kind: Deployment
metadata:

name: frontend

spec:
replicas: 3
template:
metadata:

name: frontend

labels:
app: frontend

spec:

containers:

- image: nginx:alpine
name: frontend
resources:

requests:
cpu: 100m

This example deploys three replicas of our frontend service. We then can scale
this deployment by using the kubectl scale command:

kubectl scale deployment frontend --replicas 5

This results in five replicas of our frontend service. This is great, but let’s look at
how we can add some intelligence and automatically scale the application based
on metrics.

Scaling with HPA

The Kubernetes HPA allows you to scale your deployments based on CPU,
memory, or custom metrics. It performs a watch on the deployment and pulls
metrics from the Kubernetes metrics-server. It also allows you to set the
minimum and maximum number of pods available. For example, you can define
an HPA policy that sets the minimum number of pods to 3 and the maximum
number of pods to 10, and it scales when the deployment reaches 80% CPU
usage. Setting the minimum and maximum is critical because you don’t want the
HPA to scale the replicas to an infinite amount due to an application bug or issue.

The HPA has the following default setting for sync metrics, upscaling, and
downscaling replicas:

horizontal-pod-autoscaler-sync-period

Default of 30 seconds for syncing metrics

horizontal-pod-autoscaler-upscale-delay

Default of three minutes between two upscale operations
horizontal-pod-autoscaler-downscale-delay

Default of five minutes between two downscale operations

You can change the defaults by using their relative flags, but you need to be
careful when doing so. If your workload is extremely variable, it’s worth playing
around with the settings to optimize them for your specific use case.

Let’s go ahead and set up an HPA policy for the frontend application that you
deployed in the previous exercise.

First, expose the deployment on port 80:
kubectl expose deployment frontend --port 80
Next, set the autoscale policy:
kubectl autoscale deployment frontend --cpu-percent=50 --min=1 --max=10

This sets the policy to scale your app from a minimum of 1 replica to a
maximum of 10 replicas and will invoke the scale operation when the CPU load
reaches 50%.

Let’s generate some load so that we can see the deployment autoscale:

kubectl run -1 --tty load-generator --image=busybox /bin/sh

Hit enter for command prompt
while true; do wget -q -0- http://frontend.default.svc.cluster.local; done

kubectl get hpa

You might need to wait a few minutes to see the replicas scale up automatically.

NOTE

To learn more about the internal details of the autoscaling algorithm, check out the design

https://oreil.ly/nKnez

proposal.

HPA with Custom Metrics

In Chapter 4, we introduced the role that the metrics server plays in monitoring
our systems in Kubernetes. With the Metrics Server API, we can also support
scaling our applications with custom metrics. The Custom Metrics API and
Metrics Aggregator allows third-party providers to plug in and extend the
metrics, and HPA can then scale based on these external metrics. For example,
instead of just basic CPU and memory metrics, you could scale based on a
metric you’re collecting on an external storage queue. By utilizing custom
metrics for autoscaling, you have the ability to scale application-specific metrics
or external service metrics.

Vertical Pod Autoscaler

The Vertical Pod Autoscaler (VPA) differs from the HPA in that it doesn’t scale
replicas; instead, it automatically scales requests. Earlier in the chapter, we
talked about setting requests on our pods and how that guarantees X amount of
resources for a given container. The VPA frees you from manually adjusting
these requests, and automatically scales up and scales down pod requests for
you. For workloads that can’t scale out due to their architecture, this works well
for automatically scaling the resources. For example, a MySQL database doesn’t
scale the same way as a stateless web frontend. With MySQL, you might want to
set the Master nodes to automatically scale up based on workload.

The VPA is more complex than the HPA, and it consists of three components:

Recommender

Monitors the current and past resource consumption, and provides
recommended values for the container’s CPU and memory requests

Updater

Checks which of the pods have the correct resources set, and if they don’t,
kills them so that they can be re-created by their controllers with the updated
requests

Admission Plugin

Sets the correct resource requests on new pods

As of Kubernetes v1.15, the VPA is not recommended for production
deployments.

Resource Management Best Practices

Utilize pod anti-affinity to spread workloads across multiple availability
zones to ensure high availability for your application.

If you’re using specialized hardware, such as GPU-enabled nodes,
ensure that only workloads that need GPUs are scheduled to those
nodes by utilizing taints.

Use NodeCondition taints to proactively avoid failing or degraded
nodes.

Apply nodeSelectors to your pod specifications to schedule pods to
specialized hardware that you have deployed in the cluster.

Before going to production, experiment with different node sizes to find
a good mix of cost and performance for node types.

If you’re deploying a mix of workloads with different performance
characteristics, utilize node pools to have mixed node types in a single
cluster.

Ensure that you set memory and CPU limits for all pods deployed to
your cluster.

Utilize ResourceQuotas to ensure that multiple teams or applications
are alotted their fair share of resources in the cluster.

Implement LimitRange to set default limits and requests for pod
specifications that don’t set limits or requests.

Start with manual cluster scaling until you understand your workload
profiles on Kubernetes. You can use autoscaling, but it comes with

additional considerations around node spin-up time and cluster scale
down.

e Use the HPA for workloads that are variable and that have unexpected
spikes in their usage.

Summary

In this chapter, we discussed how you can optimally manage Kubernetes and
application resources. Kubernetes provides many built-in features to manage
resources that you can use to maintain a reliable, highly utilized, and efficient
cluster. Cluster and pod sizing can be difficult at first, but through monitoring
your applications in production you can discover ways to optimize your
resources.

Chapter 9. Networking, Network
Security, and Service Mesh

Kubernetes is effectively a manager of distributed systems across a cluster of
connected systems. This immediately puts critical importance on how the
connected systems communicate with one another, and networking is the key to
this. Understanding how Kubernetes facilitates communication among the
distributed services it manages is important for the effective application of
interservice communication.

This chapter focuses on the principles that Kubernetes places on the network and
best practices around applying these concepts in different situations. With any
discussion of networking, security is usually brought along for the ride. The
traditional models of network security boundaries being controlled at the
network layer are not absent in this new world of distributed systems in
Kubernetes, but how they are implemented and the capabilities offered change
slightly. Kubernetes brings along a native API for network security policies that
will sound eerily similar to firewall rules of old.

The last section of this chapter delves into the new and scary world of service
meshes. The term “scary” is used in jest, but it is quite the Wild West when it
comes to service mesh technology in Kubernetes.

Kubernetes Network Principles

Understanding how Kubernetes uses the underlying network to facilitate
communication among services is critical to understanding how to effectively
plan application architectures. Usually, networking topics start to give most
people major headaches. We are going to keep this rather simple because this is
more of a best practice guidance than a lesson on container networking. Luckily
for us, Kubernetes has laid down some rules of the road for networking that help
to give us a start. The rules outline how communication is expected to behave
between different components. Let’s take a closer look at each of these rules:

Container-to-container communication in the same pod

All containers in the same pod share the same network space. This
effectively allows localhost communication between the containers. It also
means that containers in the same pod need to expose different ports. This is
done using the power of Linux namespaces and Docker networking to allow
these containers to be on the same local network through the use of a paused
container in every pod that does nothing but host the networking for the pod.
Figure 9-1 shows how Container A can communicate directly with Container
B using localhost and the port number that the container is listening on.

Pod

Container A
Port 80

|| Docker |
127.0.0.1:80

Container B
Port 80

Docker

Pod IP:172.22.0.12

Figure 9-1. Intrapod communication between containers

Pod-to-pod communication

All pods need to communicate with one another without any network address
translation (NAT). This means that the IP address that a pod is seen as by the
receiving pod is the sender’s actual IP address. This is handled in different
ways, depending on the network plug-in used, which we discuss in more
detail later in the chapter. This rule is true between pods on the same node
and pods that are on different nodes in the same cluster. This also extends to
the node being able to communicate directly to the pod with no NAT
involved. This allows host-based agents or system daemons to communicate
to the pods as needed. Figure 9-2 is a representation of the communication
processes between pods in the same node and pods in different nodes of the
cluster.

Node0192168.0.5 Node1192.168.0.6
Pod
Container A
Port 443
Docker
1127.0.0.1:80
Pod
Container B
Port 80 Container A
5 Port 443
ocker
Docker
Pod IP: 172.22.012 1127'0'0'1:80
Pod
Container B
Container A e
Port 443 Docker
Docker Pod IP:172.22.0.12
1127.0.0.1:80
Container B
Port 80
Docker

Pod IP:172.22.012

Figure 9-2. Pod to pod communication intra- and internode

Service-to-pod communication

Services in Kubernetes represent a durable IP address and port that is found
on each node that will forward all traffic to the endpoints that are mapped to
the service. Over the different iterations of Kubernetes, the method in favor
of enabling this has changed, but the two main methods are via the use of
iptables or the newer IP Virtual Server (IPVS). Most implementations today
use the iptables implementation to enable a pseudo-Layer 4 load balancer on
each node. Figure 9-3 is a visual representation of how the service is tied to
the pods via label selectors.

Node0192168.0.5

Pod

Container A
Port 443

Docker

1127.0.0.1:80

Container B
Port 80

Docker

T

Pod IP:172.22.012

Label:
app: web-secure

Node1192.168.0.6

Pod

Container A

Port 443

Docker

1270.0.1:80

Container B
Port 80

Docker

Pod IP:172.22.0.12

Service
DNS: ServiceName
IP: 10.244.0.12:443

Selector:
matchLabel:
app: web-secure

Label:
app: web-secure

Figure 9-3. Service to pod communication

Network Plug-ins

Early on, the Special Interest Group (SIG) guided the networking standards to
more of a pluggable architecture, which opened the door for numerous third-
party networking projects, which in many cases injected value-added capabilities
into Kubernetes workloads. These network plug-ins come in two flavors. The
most basic is called Kubenet and is the default plug-in provided by Kubernetes
natively. The second type of plug-in follows the Container Network Interface
(CNI) specification, which is a generic plug-in network solution for containers.

Kubenet

Kubenet is the most basic network plug-in that comes out of the box in
Kubernetes. It is the simplest of the plug-ins and provides a Linux bridge, cbro,
that’s a virtual Ethernet pair for the pods connected to it. The pod then gets an IP
address from a Classless Inter-Domain Routing (CIDR) range that is distributed
across the nodes of the cluster. There is also an IP masquerade flag that should
be set to allow traffic destined to IPs outside the pod CIDR range to be
masqueraded. This obeys the rules of pod-to-pod communication because only
traffic destined outside the pod CIDR undergoes network address translation
(NAT). After the packet leaves a node to go to another node, some kind of
routing is put in place to facilitate the process to forward the traffic to the correct
node.

Kubenet Best Practices

e Kubenet allows for a simplistic network stack and does not consume
precious IP addresses on already crowded networks. This is especially
true of cloud networks that are extended to on-premises datacenters.

e Ensure that the pod CIDR range is large enough to handle the potential
size of the cluster and the pods in each cluster. The default pods per
node set in kubelet is 110, but you can adjust this.

e Understand and plan accordingly for the route rules to properly allow
traffic to find pods in the proper nodes. In cloud providers, this is
usually automated, but on-premises or edge cases will require

automation and solid network management.

The CNI Plug-in

The CNI plug-in has some basic requirements set aside by the specification.
These specifications dictate the interfaces and minimal API actions that the CNI
offers and how it will interface with the container runtime that is used in the
cluster. The network management components are defined by the CNI, but they
all must include some type of IP address management and minimally allow for
the addition and deletion of a container to a network. The full original
specification that was originally derived from the rkt networking proposal is
available.

The Core CNI project provides libraries that you can use to write plug-ins that
provide the basic requirements and that can call other plug-ins that perform
various functions. This adaptability led to numerous CNI plug-ins that you can
use in container networking from cloud providers like the Microsoft Azure
native CNI and the Amazon Web Services (AWS) VPC CNI plug-in, to
traditional network providers such as Nuage CNI, Juniper Networks
Contrail/Tunsten Fabric, and VMware NSX.

CNI Best Practices

Networking is a critical component of a functioning Kubernetes environment.
The interaction between the virtual components within Kubernetes and the
physical network environment should be carefully designed to ensure
dependable application communication:

1. Evaluate the feature set needed to accomplish the overall networking
goals of the infrastructure. Some CNI plug-ins provide native high
availability, multicloud connectivity, Kubernetes network policy
support, and various other features.

2. If you are running clusters via public cloud providers, verify that any
CNI plug-ins that are not native to the cloud provider’s Software-
Defined Network (SDN) are actually supported.

3. Verify that any network security tools, network observability, and

https://oreil.ly/wGvF7

management tools are compatible with the CNI plug-in of choice, and if
not, research which tools can replace the existing ones. It is important to
not lose either observability or security capabilities because the needs
will be expanded when moving to a large-scale distributed system such
as Kubernetes. You can add tools like Weaveworks Weave Scope,
Dynatrace, and Sysdig to any Kubernetes environment, and each offers
its own benefits. If you’re running in a cloud provider’s managed
service, such as Azure AKS, Google GCE, or AWS EKS, look for
native tools like Azure Container Insights and Network Watcher,
Google Stackdriver, and AWS CloudWatch. Whatever tool you use, it
should at least provide insight into the network stack and the Four
Golden signals, made popular by the amazing Google SRE team and
Rob Ewashuck: Latency, Traffic, Errors, and Saturation.

4. If you’re using CNIs that do not provide an overlay network separate
from the SDN network space, ensure that you have proper network
address space to handle node IPs, pod IPs, internal load balancers, and
overhead for cluster upgrade and scale out processes.

Services in Kubernetes

When pods are deployed into a Kubernetes cluster, because of the basic rules of
Kubernetes networking and the network plug-in used to facilitate these rules,
pods can directly communicate only with other pods within the same cluster.
Some CNI plug-ins give the pods IPs on the same network space as the nodes, so
technically, after the IP of a pod is known, it can be accessed directly from
outside the cluster. This, however, is not an efficient way to access services
being served by a pod, because of the ephemeral nature of pods in Kubernetes.
Imagine that you have a function or system that needs to access an API that is
running in a pod in Kubernetes. For a while, that might work with no issue, but
at some point there might be a voluntary or involuntary disruption that will cause
that pod to disappear. Kubernetes will potentially create a replacement pod with
a new name and IP address, so naturally there needs to be some mechanism to
find the replacement pod. This is where the service API comes to the rescue.

The service API allows for a durable IP and port to be assigned within the

Kubernetes cluster and automatically mapped to the proper pods as endpoints to
the service. This magic happens through the aforementioned iptables or IPVS on
Linux nodes to create a mapping of the assigned service IP and port to the
endpoint’s or pod’s actual IPs. The controller that manages this is called the

kube-proxy service, which actually runs on each node in the cluster. It is
responsible for manipulating the iptables rules on each node.

When a service object is defined, the type of service needs to be defined. The
service type will dictate whether the endpoints are exposed only within the
cluster or outside of the cluster. There are four basic service types that we will
discuss briefly in the following sections.

Service Type ClusterlP

ClusterIP is the default service type if one is not declared in the specification.
ClusterIP means that the service is assigned an IP from a designated service
CIDR range. This IP is as long lasting as the service object, so it provides an IP
and port and protocol mapping to backend pods using the selector field;
however, as we will see, there are cases for which you can have no selector. The
declaration of the service also provides for a Domain Name System (DNS) name
for the service. This facilitates service discovery within the cluster and allows
for workloads to easily communicate to other services within the cluster by using
DNS lookup based on the service name. As an example, if you have the service
definition shown in the following example and need to access that service from
another pod inside the cluster via an HTTP call, the call can simply use
http://web1-svc if the client is in the same namespace as the service:

apiVersion: vl
kind: Service
metadata:
name: webl-svc
spec:
selector:
app: web1l
ports:
- port: 80
targetPort: 8081

If it is required to find services in other namespaces, the DNS pattern would be

http://web1-svc

<service_name>.<namespace_name>.svc.cluster. local.

If no selector is given in a service definition, the endpoints can be explicitly
defined for the service by using an endpoint API definition. This will basically
add an IP and port as a specific endpoint to a service instead of relying on the
selector attribute to automatically update the endpoints from the pods that are in
scope by the selector match. This can be useful in a few scenarios in which you
have a specific database that is not in a cluster that is to be used for testing but
you will change the service later to a Kubernetes-deployed database. This is
sometimes called a headless service because it is not managed by kube-proxy as
other services are, but you can directly manage the endpoints, as shown in
Figure 9-4.

Selector:
app: webl
Clignt calls Service
ServiceA y DNS name :
102440712 <& Client Pod
ServiceA 10.244.0.12
PodA(172.22.0.12:80)
PodB(172.22.1.32:80)
Pod((172.22.2.45:80)
POHN".
Endpoint
[1
PodA PodB PodC
Label: Label: Label:
app: web1 app: web1 app: web1

Figure 9-4. Cluster]PPod and Service visualization

Service Type NodePort

The NodePort service type assigns a high-level port on each node of the cluster
to the Service IP and port on each node. The high-level NodePorts fall within the
30,000 through 32,767 ranges and can either be statically assigned or explicitly
defined in the service specification. NodePorts are usually used for on-premises
clusters or bespoke solutions that do not offer automatic load-balancing
configuration. To directly access the service from outside the cluster, use
NodelP:NodePort, as depicted in Figure 9-5.

NodePort

Cluster
Selector:
app: webl
CIigntcaIIsService
ServiceA y DNS name :
10244012 = Client Pod
ServiceA 10.244.0.12
PodA(172.22.0.12:80)
PodB(172.22.1.32:80)
Pod(C(172.22.2 45:80)
Poal\l...
Endpoint
| (30 y i 1
|]] 1 1
l PodA ' PodB i
|]] 11
|] | | I |
|]] | I |
I [Label: [
: b app:webl |} |
| Vi b
:PodA 172.22.0.12:80 : :PodB 172.22.1.32:80 : :PodC 172.22.2.45:80
: b Vo
| [52 (|
:NodeOIP. ! }Node]IP. e | :NodeZIP.
1 192.168.0.5 1 1192168.0.6 ™1 , 1192168.0.7
Lo e e == - — - S ‘6 —d b e = ——
o

‘ External Client

Figure 9-5. NodePort—Pod, Service and Host network visualization

Service Type ExternalName

The ExternalName service type is seldom used in practice, but it can be helpful

for passing cluster-durable DNS names to external DNS named services. A
common example is an external database service from a cloud provider that has
a unique DNS provided by the cloud provider, such as
mymongodb.documents.azure.com. Technically, this can be added very easily
to a pod specification using an Environment variable, as discussed in Chapter 6;
however, it might be more advantageous to use a more generic name in the
cluster, such as prod-mongodb, which enables the change of the actual database
it points to by just changing the service specification instead of having to recycle
the pods because the Environment variable has changed:

kind: Service
apiVersion: vi
metadata:
name: prod-mongodb
namespace: prod
spec:
type: ExternalName
externalName: mymongodb.documents.azure.com

Service Type LoadBalancer

LoadBalancer is a very special service type because it enables automation with
cloud providers and other programmable cloud infrastructure services. The
LoadBalancer type is a single method to ensure the deployment of the load-
balancing mechanism that the infrastructure provider of the Kubernetes cluster
provides. This means that in most cases, LoadBalancer will work roughly the
same way in AWS, Azure, GCE, OpenStack, and others. In most cases, this entry
will create a public-facing load-balanced service; however, each cloud provider
has some specific annotations that enable other features, such as internal-only
load balancers, AWS ELB configuration parameters, and so on. You can also
define the actual load-balancer IP to use and the source ranges to allow within
the service specification, as seen in the code sample that follows and the visual
representation in Figure 9-6:

kind: Service
apiVersion: vi
metadata:

name: web-svc
spec:

type: LoadBalancer
selector:

app: web
ports:
- protocol: TCP

port: 80

targetPort: 8081
loadBalancerIP: 13.12.21.31
loadBalancerSourceRanges:
- "142.43.0.0/16"

NodePort

Cluster
Selector:
app: web1

Client calls Service

ServiceA by DNS name

10.244.0.12 Client Pod

ServiceA 10.244.0.12
PodA(172.22.012:80)

PodB(172.22.1.32:80)
Pod((172.22.2 45:80)

PoEiI\I...

Endpoint

PodA 172.22.0.12:80 PodB 172.22.1.32:80

Nodel IP:
192168.0.6

r
I
|
|
|
|
I
|
|
|
|
I
|
|
|
|
|
I
|
|
|
I
L

Cloud Provider ;
External Client
Load Balancer Client -> 192.168.0.30:80

Figure 9-6. LoadBalancer—Pod, Service, Node, and Cloud Provider network visualization

Ingress and Ingress Controllers

Although not technically a service type in Kubernetes, the Ingress specification
is an important concept for ingress to workloads in Kubernetes. Services, as

defined by the Service API, allow for a basic level of Layer 3/4 load balancing.

The reality is that many of the stateless services that are deployed in Kubernetes
require a high level of traffic management and usually require application-level

control: more specifically, HTTP protocol management.

The Ingress API is basically an HTTP-level router that allows for host- and path-
based rules to direct to specific backend services. Imagine a website hosted on
www.evillgenius.com and two different paths that are hosted on that site,
/registration and /labaccess, that are served by two different services hosted in
Kubernetes, reg-svc and labaccess-svc. You can define an ingress rule to
ensure that requests to www.evillgenius/registration are forwarded to the reg-
svc service and the correct endpoint pods, and, similarly, that requests to
www.evillgenius.com/labaccess are forwarded to the correct endpoints of the
labaccess-svc service. The Ingress API also allows for host-based routing to
allow for different hosts on a single ingress. An additional feature is the ability to
declare a Kubernetes secret that holds the certificate information for Transport
Layer Security (TLS) termination on port 443. When a path is not specified,
there is usually a default backend that can be used to give a better user
experience than the standard 404 error.

The details around the specific TLS and default backend configuration are
actually handled by what is known as the Ingress controller. The Ingress
controller is decoupled from the Ingress API and allows for operators to deploy
an Ingress controller of choice, such as NGINX, Traefik, HAProxy, and others.
An Ingress controller, as the name suggests, is a controller, just like any
Kubernetes controller, but it’s not part of the system and is instead a third-party
controller that understands the Kubernetes Ingress API for dynamic
configuration. The most common implementation of an Ingress controller is
NGINX because it is partly maintained by the Kubernetes project; however,
there are numerous examples of both open source and commercial Ingress
controllers:

apiVersion: extensions/vibetal
kind: Ingress
metadata:
name: labs-ingress
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /

spec:
tls:
- hosts:
- www.evillgenius.com
secretName: secret-tls
rules:
- host: www.evillgenius.com
http:
paths:
- path: /registration
backend:
serviceName: reg-svc
servicePort: 8088
- path: /labaccess
backend:
serviceName: labaccess-svc
servicePort: 8089

Services and Ingress Controllers Best Practices

Creating a complex virtual network environment with interconnected
applications requires careful planning. Effectively managing how the different
services of the application communicate with one another and to the outside
world requires constant attention as the application changes. These best practices
will help make the management easier:

e Limit the number of services that need to be accessed from outside the
cluster. Ideally, most services will be ClusterIP, and only external-facing
services will be exposed externally to the cluster.

o If the services that need to be exposed are primarily HTTP/HTTPS-
based services, it is best to use an Ingress API and Ingress controller to
route traffic to backing services with TLS termination. Depending on
the type of Ingress controller used, features such as rate limiting, header
rewrites, OAuth authentication, observability, and other services can be
made available without having to build them into the applications
themselves.

e Choose an Ingress controller that has the needed functionality for secure
ingress of your web-based workloads. Standardize on one and use it
across the enterprise because many of the specific configuration
annotations vary between implementations and prevent the deployment

code from being portable across enterprise Kubernetes implementations.

e Evaluate cloud service provider-specific Ingress controller options to
move the infrastructure management and load of the ingress out of the
cluster, but still allow for Kubernetes API configuration.

e When serving mostly APIs externally, evaluate API-specific Ingress
controllers, such as Kong or Ambassador, that have more fine-tuning for
API-based workloads. Although NGINX, Traefik, and others might
offer some API tuning, it will not be as fine-grained as specific API
proxy systems.

e When deploying Ingress controllers as pod-based workloads in
Kubernetes, ensure that the deployments are designed for high
availability and aggregate performance throughput. Use metrics
observability to properly scale the ingress, but include enough cushion
to prevent client disruptions while the workload scales.

Network Security Policy

The NetworkPolicy API built into Kubernetes allows for network-level ingress
and egress access control defined with your workload. Network policies allow
you to control how groups of pods are allowed to communicate with one another
and with other endpoints. If you want to dig deeper into the NetworkPolicy
specification, it might sound confusing, especially given that it is defined as a
Kubernetes API, but it requires a network plug-in that supports the
NetworkPolicy API.

Network policies have a simple YAML structure that can look complicated, but
if you think of it as a simple East-West traffic firewall, it might help you to
understand it a little better. Each policy specification has podSelector,
ingress, egress, and policyType fields. The only required field is
podSelector, which follows the same convention as any Kubernetes selector
with a matchLabels. You can create multiple NetworkPolicy definitions that can
target the same pods, and the effect is additive in nature. Because NetworkPolicy
objects are namespaced objects, if no selector is given for a podSelector, all
pods in the namespace fall into the scope of the policy. If there are any ingress or

egress rules defined, this creates a whitelist of what is allowed to or from the
pod. There is an important distinction here: if a pod falls into the scope of a
policy because of a selector match, all traffic, unless explicitly defined in an
ingress or egress rule, is blocked. This little, nuanced detail means that if a pod
does not fall into any policy because of a selector match, all ingress and egress is
allowed to the pod. This was done on purpose to allow for ease of deploying new
workloads into Kubernetes without any blockers.

The ingress and egress fields are basically a list of rules based on source or
destination and can be specific CIDR ranges, podSelectors, or

namespaceSelectors. If you leave the ingress field empty, it is like a deny-all
inbound. Similarly, if you leave the egress empty, it is deny-all outbound. Port
and protocol lists are also supported to further tighten down the type of
communications allowed.

The policyTypes field specifies to which network policy rule types the policy
object is associated. If the field is not present, it will just look at the ingress and
egress lists fields. The difference again is that you must explicitly call out
egress in policyTypes and also have an egress rule list for this policy to work.
Ingress is assumed, and defining it explicitly is not needed.

Let’s use a prototypical example of a three-tier application deployed to a single
namespace where the tiers are labeled as tier: "web", tier: "db", and tier:

"api". If you want to ensure that traffic is limited to each tier properly, create a
NetworkPolicy manifest like this:

Default deny rule:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy

metadata:
name: default-deny-all
spec:
podSelector: {}
policyTypes:
- Ingress

Web layer network policy:

apiVersion: networking.k8s.io0/v1

kind: NetworkPolicy
metadata:
name: webaccess
spec:
podSelector:
matchlLabels:
tier: "web"
policyTypes:
- Ingress
ingress:

- {3
API layer network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-api-access
spec:
podSelector:
matchlLabels:
tier: "api"
policyTypes:
- Ingress
ingress:
- from:
- podSelector:
matchlLabels:
tier: "web"

Database layer network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-db-access
spec:
podSelector:
matchlLabels:
tier: "db"
policyTypes:
- Ingress
ingress:
- from:
- podSelector:
matchlLabels:

" s n

tier: "api

Network Policy Best Practices

Securing network traffic in an enterprise system was once the domain of
physical hardware devices with complex networking rule sets. Now, with
Kubernetes network policy, a more application-centric approach can be taken to
segment and control the traffic of the applications hosted in Kubernetes. Some
common best practices apply no matter which policy plug-in used:

o Start off slow and focus on traffic ingress to pods. Complicating matters
with ingress and egress rules can make network tracing a nightmare. As
soon as traffic is flowing as expected, you can begin to look at egress
rules to further control flow to sensitive workloads. The specification
also favors ingress because it defaults many options even if nothing is
entered into the ingress rules list.

e Ensure that the network plug-in used either has some of its own
interface to the NetworkPolicy API or supports other well-known plug-
ins. Example plug-ins include Calico, Cilium, Kube-router, Romana,
and Weave Net.

o If the network team is used to having a “default-deny” policy in place,
create a network policy such as the following for each namespace in the
cluster that will contain workloads to be protected. This ensures that
even if another network policy is deleted, no pods are accidentally
“exposed”:

apiVersion: networking.k8s.io0/v1
kind: NetworkPolicy

metadata:
name: default-deny-all
spec:
podSelector: {}
policyTypes:
- Ingress

4. 1If there are pods that need to be accessed from the internet, use a label
to explicitly apply a network policy that allows ingress. Be aware of the
entire flow in case the actual IP that a packet is coming from is not the
internet, but the internal IP of a load balancer, firewall, or other network
device. For example, to allow traffic from all (including external)

sources for pods having the allow-internet=true label, do this:

apiVersion: networking.k8s.io0/v1
kind: NetworkPolicy
metadata:

name: internet-access
spec:

podSelector:

matchlLabels:
allow-internet: "true"

policyTypes:

- Ingress

ingress:

- {1

5. Try to align application workloads to single namespaces for ease of
creating rules because the rules themselves are namespace specific. If
cross-namespace communication is needed, try to be as explicit as
possible and perhaps use specific labels to identify the flow pattern:

apiVersion: networking.k8s.io0/v1
kind: NetworkPolicy
metadata:
name: namespace-foo-2-namespace-bar
namespace: bar
spec:
podSelector:
matchlLabels:
app: bar-app
policyTypes:
- Ingress
ingress:
- from:
- namespaceSelector:
matchlLabels:
networking/namespace: foo
podSelector:
matchlLabels:
app: foo-app

6. Have a test bed namespace that has fewer restrictive policies, if any at
all, to allow time to investigate the correct traffic patterns needed.

Service Meshes

It is easy to imagine a single cluster hosting hundreds of services that load-
balance across thousands of endpoints that communicate with one another,
access external resources, and potentially are being accessed from external
sources. This can be quite daunting when trying to manage, secure, observe, and
trace all of the connections between these services, especially with the dynamic
nature of the endpoints coming and going from the overall system. The concept
of a service mesh, which is not unique to Kubernetes, allows for control over
how these services are connected and secured with a dedicated date plane and
control plane. Service meshes all have different capabilities, but usually they all
offer some of the following:

e Load balancing of traffic with potentially fine-grained traffic-shaping
policies that are distributed across the mesh.

e Service discovery of services that are members of the mesh, which
might include services within a cluster or in another cluster, or an
outside system that is a member of the mesh.

e Observability of the traffic and services, including tracing across the
distributed services using tracing systems like Jaeger or Zipkin that
follow the OpenTracing standards.

e Security of the traffic in the mesh using mutual authentication. In some
cases, not only pod-to-pod or East-West traffic is secured, but an Ingress
controller is also provided that offers North-South security and control.

e Resiliency, health, and failure-prevention capabilities that allow for
patterns such as circuit breaker, retries, deadlines, and so on.

The key here is that all of these features are integrated into the applications that
take part in the mesh with little or no application changes. How can all of these
amazing features come for free? Sidecar proxies are usually the way this is done.
The majority of service meshes available today inject a proxy that is part of the
data plane into each pod that is a member of the mesh. This allows for policies
and security to be synchronized across the mesh by the control-plane
components. This really hides the network details from the container that holds
the workload and leaves it to the proxy to handle the complexity of the

distributed network. To the application, it just talks via localhost to its proxy. In
many cases, the control plane and data plane might be different technologies but
complementary to each other.

In many cases, the first service mesh that comes to mind is Istio, a project by
Google, Lyft, and IBM that uses Envoy as its data-plane proxy and uses
proprietary control-plane components Mixer, Pilot, Galley, and Citadel. There
are other service meshes that offer varying levels of capabilities, such as
Linkerd2, which uses its own data-plane proxy built using Rust. HashiCorp has
recently added more Kubernetes-centric service mesh capabilities to Consul,
which allows you to choose between Consul’s own proxy or Envoy, and offers
commercial support for its service mesh.

The topic of service meshes in Kubernetes is a fluid one—if not overly
emotional in many social media tech circles—so a detailed explanation of each
mesh has no value here. I would be remiss if I did not mention the promising
efforts lead by Microsoft, Linkerd, HashiCorp, Solo.io, Kinvolk, and
Weaveworks around the Service Mesh Interface (SMI). The SMI hopes to set a
standard interface for basic feature sets that are expected of all service meshes.
The specification as of this writing covers traffic policy such as identity and
transport-level encryption, traffic telemetry that captures key metrics between
services in the mesh, and traffic management to allow for traffic shifting and
weighting between different services. This project hopes to take some of the
variability out of the service meshes yet allow for service mesh vendors to
extend and build value-added capabilities into their products to differentiate
themselves from others.

Service Mesh Best Practices

The service mesh community continues to grow every day, and as more and
more enterprises help define their needs, the service mesh ecosystem will change
dramatically. These best practices are, as of this writing, based on common
necessities that service meshes try to solve today:

e Rate the importance of the key features service meshes offer and
determine which current offerings provide the most important features
with the least amount of overhead. Overhead here is both human

technical debt and infrastructure resource debt. If all that is really
required is mutual TLS between certain pods, would it be easier to
perhaps find a CNI that offers that integrated into the plug-in?

¢ Is the need for a cross-system mesh such as multicloud or hybrid
scenarios a key requirement? Not all service meshes offer this
capability, and if they do, it is a complicated process that often
introduces fragility into the environment.

e Many of the service mesh offerings are open source community-based
projects, and if the team that will be managing the environment is new
to service meshes, commercially supported offerings might be a better
option. There are companies that are beginning to offer commercially
supported and managed service meshes based on Istio, which can be
helpful because it is almost universally agreed upon that Istio is a
complicated system to manage.

Summary

In addition to application management, one of the most important things that
Kubernetes provides is the ability to link different pieces of your application
together. In this chapter, we looked at the details of how Kubernetes works,
including how pods get their IP addresses through CNI plug-ins, how those IPs
are grouped together to form services, and how more application or Layer 7
routing can be implemented via Ingress resources (which in turn use services).
You also saw how to limit traffic and secure your network using networking
policies, and, finally, how service mesh technologies are transforming the ways
in which people connect and monitor the connections between their services. In
addition to setting up your application to run and be deployed reliably, setting up
the networking for your application is a crucial piece of using Kubernetes
successfully. Understanding how Kubernetes approaches networking and how
that intersects optimally with your application is a critical piece of its ultimate
success.

Chapter 10. Pod and Container
Security

When it comes to pod security via the Kubernetes API, you have two main
options at your disposal: PodSecurityPolicy and RuntimeClass. In this chapter,
we review the purpose and use of each API and provide best practices for their
use.

PodSecurityPolicy API

NOTE

The PodSecurityPolicy API is under active development. As of Kubernetes 1.15, this API was
in beta. Please visit the upstream documentation for the latest updates on the feature state.

This cluster-wide resource creates a single place to define and manage all of the
security-sensitive fields found in pod specifications. Prior to the creation of the
PodSecurityPolicy resource, cluster administrators and/or users would need to
independently define individual SecurityContext settings for their workloads
or enable bespoke admission controllers on the cluster to enforce some aspects
of pod security.

Does all of this sound too easy? PodSecurityPolicy is surprisingly difficult to
implement effectively and will more often than not get turned off or evaded in
other ways. We do, however, strongly suggest taking the time to fully understand
PodSecurityPolicy because it’s one of the single most effective means to reduce
your attack surface area by limiting what can run on your cluster and with what
level of privilege.

Enabling PodSecurityPolicy

Along with the resource API, a corresponding admission controller must be

https://oreil.ly/7UOWx

enabled to enforce the conditions defined in the PodSecurityPolicy resource.
This means that the enforcement of these policies happens at the admission
phase of the request flow. To learn more about how admission controllers work,
refer to Chapter 17.

It’s worth mentioning that enabling PodSecurityPolicy is not widely available
among public cloud providers and cluster operations tools. In the cases for which
it is available, it’s generally shipped as an opt-in feature.

Proceed with caution when enabling PodSecurityPolicy because it’s potentially workload
blocking if adequate preparation isn’t done at the outset.

There are two main components that you need to complete in order to start using
PodSecurityPolicy:

1. Ensure that the PodSecurityPolicy API is enabled (this should already
be done if you’re on a currently supported version of Kubernetes).

You can confirm that this API is enabled by running kubectl get psp.
As long as the response isn’t the server doesn't have a resource
type "PodSecurityPolicies, you are OK to proceed.

2. Enable the PodSecurityPolicy admission controller via the api-server
flag --enable-admission-plugins.

If you are enabling PodSecurityPolicy on an existing cluster with running workloads, you must
create all necessary policies, service accounts, roles, and role bindings before enabling the
admission controller.

We also recommend the addition of the - -use-service-account-
credentials=true flag to kube-controller-manager, which will enable
service accounts to be used for each individual controller within kube -

controller-manager. This allows for more granular policy control even within
the kube-system namespace. You can simply run the following command to
determine whether the flag has been set. It demonstrates that there is indeed a
service account per controller:

$ kubectl get serviceaccount -n kube-system | grep '.*-controller'
attachdetach-controller 1 6d13h

certificate-controller 1 6d13h
clusterrole-aggregation-controller 1 6d13h
cronjob-controller 1 6d13h
daemon-set-controller 1 6d13h
deployment-controller 1 6d13h
disruption-controller 1 6d13h
endpoint-controller 1 6d13h
expand-controller 1 6d13h
job-controller 1 6d13h
namespace-controller 1 6d13h
node-controller 1 6d13h
pv-protection-controller 1 6d13h
pvc-protection-controller 1 6d13h
replicaset-controller 1 6d13h
replication-controller 1 6d13h
resourcequota-controller 1 6d13h
service-account-controller 1 6d13h
service-controller 1 6d13h
statefulset-controller 1 6d13h
ttl-controller 1 6d13h

It’s extremely important to remember that having no PodSecurityPolicies defined will result in
an implicit deny. This means that without a policy match for the workload, the pod will not be
created.

Anatomy of a PodSecurityPolicy

To best understand how PodSecurityPolicy enables you to secure your pods, let’s
work through an end-to-end example together. This will help solidify the order
of operations from policy creation through use.

Before you continue, the following section requires that your cluster have
PodSecurityPolicy enabled in order for it to work. To see how to enable it, refer

to the previous section.

WARNING

You should not enable PodSecurityPolicy on a live cluster without considering the warnings
provided in the previous section. Proceed with caution.

Let’s first test the experience without making any changes or creating any
policies. The following is a test workload that simply runs the trusty pause
container in a Deployment (save this file as pause-deployment.yaml on your
local filesystem for use throughout this section):

apiVersion: apps/vi
kind: Deployment
metadata:
name: pause-deployment
namespace: default
labels:
app: pause
spec:
replicas: 1
selector:
matchLabels:
app: pause
template:
metadata:
labels:
app: pause
spec:
containers:
- name: pause
image: k8s.gcr.io/pause

By running the following command, you can verify that you have a Deployment

and a corresponding ReplicaSet but NO pod:

$ kubectl get deploy,rs,pods -1 app=pause

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.extensions/pause-delpoyment 0/1 0 0 41s
NAME DESIRED CURRENT READY

replicaset.extensions/pause-delpoyment-67b77c4f69 1 0 0

If you describe the ReplicaSet, you can confirm the cause from the event log:

$ kubectl describe replicaset -1 app=pause

Name: pause-delpoyment-67b77c4f69
Namespace: default
Selector: app=pause,pod-template-hash=67b77c4f69
Labels: app=pause
pod-template-hash=67b77c4f69
Annotations: deployment.kubernetes.io/desired-replicas: 1

deployment.kubernetes.io/max-replicas: 2
deployment.kubernetes.io/revision: 1
Controlled By: Deployment/pause-delpoyment
Replicas: O current / 1 desired
Pods Status: ® Running / O Waiting / 0 Succeeded / 0 Failed
Pod Template:
Labels: app=pause
pod-template-hash=67b77c4f69

Contatiners:
pause:
Image: k8s.gcr.io/pause
Port: <none>
Host Port: <none>
Environment: <none>
Mounts: <none>
Volumes: <none>
Conditions:
Type Status Reason
ReplicaFailure True FailedCreate
Events:
Type Reason Age From Message

Warning FailedCreate 45s (x15 over 2m7s) replicaset-controller Error creating:
pods "pause-delpoyment-67b77c4f69-" is forbidden: unable to validate against any pod
security policy: []

This is because there are either no pod security policies defined or the service
account is not allowed access to use the PodSecurityPolicy. You might have also
noticed that all of the system pods in the kube-system namespace are probably
still in RUNNING state. This is because these requests have already passed the
admission phase for the request. If there were an event that restarted these pods,
they would also suffer the same fate as our test workload given that there are no
PodSecurityPolicy resources defined:

replicaset-controller Error creating: pods "pause-delpoyment-67b77c4f69-" 1is

forbidden: unable to validate against any pod security policy: []
Let’s delete the test workload deployment:

$ kubectl delete deploy -1 app=pause
deployment.extensions "pause-delpoyment" deleted

Now, let’s go fix this by defining pod security policies. For a complete list of
policy settings, refer to the Kubernetes documentation. The following policies
are basic variations of the examples provided in the Kubernetes documentation.

Call the first policy privileged, which we use to demonstrate how to allow
privileged workloads. You can apply the following resources by using kubectl
create -f <filename>:

apiVersion: policy/vibetal
kind: PodSecurityPolicy
metadata:

name: privileged
spec:

privileged: true

allowPrivilegeEscalation: true

allowedCapabilities:

- !

volumes:
RES
hostNetwork: true
hostPorts:
- min: O

max: 65535
hostIPC: true
hostPID: true
runAsUser:

rule: 'RunAsAny'
seLinux:

rule: 'RunAsAny'
supplementalGroups:

rule: 'RunAsAny'
fsGroup:

rule: 'RunAsAny'

The next policy defines restricted access and will suffice for many workloads
apart from those responsible for running Kubernetes cluster-wide services such

as kube-proxy, located in the kube - system namespace:

https://oreil.ly/AsuVb/

apiVersion: policy/vibetal

kind: PodSecurityPolicy

metadata:
name: restricted

spec:
privileged: false
allowPrivilegeEscalation: false
requiredDropCapabilities:

- ALL
volumes:

- 'configMap'

- 'emptyDir'

- 'projected'’

- 'secret'

- 'downwardAPI'

- 'persistentVolumeClaim'
hostNetwork: false
hostIPC: false
hostPID: false
runAsUser:

rule: 'RunAsAny'
seLinux:

rule: 'RunAsAny'
supplementalGroups:

rule: 'MustRunAs'

ranges:

- min: 1
max: 65535
fsGroup:

rule: 'MustRunAs'

ranges:

- min: 1
max: 65535
readOnlyRootFilesystem: false

You can confirm that the policies have been created by running the following
command:

$ kubectl get psp

NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
READONLYROOTFS VOLUMES

privileged true * RunAsAny RunAsAny RunAsAny RunAsAny
false *

restricted false RunAsAny MustRunAsNonRoot MustRunAs MustRunAs
false

configMap,emptyDir,projected,secret,downwardAPI,persistentVolumeClaim

Now that we have defined these policies, we need to grant the service accounts
access to use these policies via Role-Based Access Control (RBAC).

First, create the following ClusterRole that allows access to use the restricted
PodSecurityPolicy that we created in the previous step:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io0/v1
metadata:

name: psp-restricted
rules:
- apiGroups:

- extensions

resources:

- podsecuritypolicies

resourceNames:

- restricted

verbs:

- use

Now, create the following ClusterRole that allows access to use the privileged
PodSecurityPolicy we created in the previous step:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io0/v1
metadata:

name: psp-privileged
rules:
- apiGroups:

- extensions

resources:

- podsecuritypolicies

resourceNames:

- privileged

verbs:

- use

We must now create a corresponding ClusterRoleBinding that allows the
system:serviceaccounts group access to psp-restricted ClusterRole.

This group includes all of the kube-controller-manager controller service
accounts:

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: psp-restricted
subjects:
- kind: Group
name: system:serviceaccounts
namespace: kube-system
roleRef:
kind: ClusterRole
name: psp-restricted
apiGroup: rbac.authorization.k8s.1o

Go ahead and create the test workload again. You can see that the pod is now up
and running;:

$ kubectl create -f pause-deployment.yaml
deployment.apps/pause-deployment created
$ kubectl get deploy,rs,pod

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.extensions/pause-deployment 1/1 1 1 10s

NAME DESIRED CURRENT READY AGE
replicaset.extensions/pause-deployment-67b77c4f69 1 1 1 10s
NAME READY STATUS RESTARTS AGE
pod/pause-deployment-67b77c4f69-4gmdn 1/1 Running 0 9s

Update the test workload deployment to violate the restricted policy. Adding
privileged=true should do the trick. Save this manifest as pause-privileged-
deployment.yaml on your local filesystem and then apply it by using kubectl
apply -f <filename>:

apiVersion: apps/vi
kind: Deployment
metadata:
name: pause-privileged-deployment
namespace: default
labels:
app: pause
spec:
replicas: 1
selector:
matchlLabels:
app: pause
template:

metadata:
labels:
app: pause
spec:
containers:
- name: pause
image: k8s.gcr.io/pause
securityContext:
privileged: true

Again, you can see that both the Deployment and the ReplicaSet have been
created; however, the pod has not. You can find the details of why in the event
log of the ReplicaSet:

$ kubectl create -f pause-privileged-deployment.yaml
deployment.apps/pause-privileged-deployment created
$ kubectl get deploy,rs,pods -1 app=pause

NAME READY UP-TO-DATE AVAILABLE
AGE
deployment.extensions/pause-privileged-deployment 0/1 0 0
37s
NAME DESIRED CURRENT
READY AGE
replicaset.extensions/pause-privileged-deployment-6b7bcfbob7 1 0
37s
$ kubectl describe replicaset -1 app=pause
Name: pause-privileged-deployment-6b7bcfbob7
Namespace: default
Selector: app=pause,pod-template-hash=6b7bcfbob7
Labels: app=pause
pod-template-hash=6b7bcfbob7
Annotations: deployment.kubernetes.io/desired-replicas: 1

deployment.kubernetes.io/max-replicas: 2

deployment.kubernetes.io/revision: 1
Controlled By: Deployment/pause-privileged-deployment
Replicas: 0 current / 1 desired
Pods Status: O Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:

Labels: app=pause
pod-template-hash=6b7bcfbb7

Contatiners:
pause:
Image: k8s.gcr.io/pause
Port: <none>
Host Port: <none>

Environment: <none>
Mounts: <none>

Volumes: <none>

Conditions:
Type Status Reason
ReplicaFailure True FailedCreate
Events:
Type Reason Age From Message

Warning FailedCreate 78s (x15 over 2m39s) replicaset-controller Error
creating: pods "pause-privileged-deployment-6b7bcfb9b7-" is forbidden: unable to
validate against any pod security policy:
[spec.containers[0].securityContext.privileged: Invalid value: true: Privileged
containers are not allowed]

The preceding example shows the exact reason why: Privileged containers
are not allowed. Let’s delete the test workload deployment.

$ kubectl delete deploy pause-privileged-deployment
deployment.extensions "pause-privileged-deployment" deleted

So far, we’ve dealt only with cluster-level bindings. How about we allow the test
workload access to the privileged policy using a service account.

First, create a serviceaccount in the default namespace:

$ kubectl create serviceaccount pause-privileged
serviceaccount/pause-privileged created

Bind that serviceaccount to the permissive ClusterRole. Save this manifest
as role-pause-privileged-psp-permissive.yaml on your local filesystem and then
apply it by using kubectl apply -f <filename>:

apiVersion: rbac.authorization.k8s.io/v1betal
kind: RoleBinding
metadata:
name: pause-privileged-psp-permissive
namespace: default
roleRef:
apiGroup: rbac.authorization.k8s.1o
kind: ClusterRole
name: psp-privileged
subjects:
- kind: ServiceAccount
name: pause-privileged

namespace: default

Finally, update the test workload to use the pause-privileged service account.
Then apply it to the cluster using kubectl apply:

apiVersion: apps/vi
kind: Deployment
metadata:
name: pause-privileged-deployment
namespace: default
labels:
app: pause
spec:
replicas: 1
selector:
matchlLabels:
app: pause
template:
metadata:
labels:
app: pause
spec:
containers:
- name: pause
image: k8s.gcr.io/pause
securityContext:
privileged: true
serviceAccountName: pause-privileged

You can see that the pod is now able to use the privileged policy:

$ kubectl create -f pause-privileged-deployment.yaml
deployment.apps/pause-privileged-deployment created
$ kubectl get deploy,rs,pod

NAME READY UP-TO-DATE AVAILABLE
AGE

deployment.extensions/pause-privileged-deployment 1/1 1 1

14s

NAME DESIRED CURRENT
READY AGE

replicaset.extensions/pause-privileged-deployment-658dc5569f 1 1

14s

NAME READY STATUS RESTARTS AGE

pod/pause-privileged-deployment-658dc5569f-nslnw 1/1 Running © 14s

TIP

You can see which PodSecurityPolicy was matched by using the following command:

$ kubectl get pod -1 app=pause -o yaml | grep psp
kubernetes.io/psp: privileged

PodSecurityPolicy Challenges

Now that you understand how to configure and use PodSecurityPolicy, it’s worth
noting that there are quite a few challenges with using it in real-world
environments. In this section, we describe things that we have experienced that
make it challenging.

Reasonable default policies

The real power of PodSecurityPolicy is to enable the cluster administrator and/or
user to ensure that their workloads meet a certain level of security. In practice,
you might often overlook just how many workloads run as root, use hostPath
volumes, or have other risky settings that force you to craft policies with security
holes just to get the workloads up and running.

Lots of toil

Getting the policies just right is a large investment, especially where there is a
large set of workloads already running on Kubernetes without PodSecurityPolicy
enabled.

Are your developers interested in learning PodSecurityPolicy?

Will your developers want to learn PodSecurityPolicy? What would be the
incentive for them to do so? Without a lot of up front coordination and
automation to make enabling PodSecurityPolicy a smooth transition, it’s very
likely that PodSecurityPolicy won’t be adopted at all.

Debugging is cumbersome

It’s difficult to troubleshoot policy evaluation. For example, you might want to

understand why your workload matched or didn’t match a specific policy.
Tooling or logging to make that easy doesn’t exist at this stage.

Do you rely on artifacts outside your control?

Are you pulling images from Docker Hub or another public repository? Chances
are they will violate your policies in some shape or form and will be out of your
control to fix. Another common place is Helm charts: do they ship with the
appropriate policies in place?

PodSecurityPolicy Best Practices

PodSecurityPolicy is complex and can be error prone. Refer to the following
best practices before implementing PodSecurityPolicy on your clusters:

e [t all comes down to RBAC. Whether you like it or not,
PodSecurityPolicy is determined by RBAC. It’s this relationship that
actually exposes all of the shortcomings in your current RBAC policy
design. We cannot stress just how important it is to automate your
RBAC and PodSecurityPolicy creation and maintenance. Specifically
locking down access to service accounts is the key to using policy.

¢ Understand the policy scope. Determining how your policies will be
laid out on your cluster is very important. Your policies can be cluster-
wide, namespaced, or workload-specific in scope. There will always be
workloads on your cluster that are part of the Kubernetes cluster
operations that will need more permissive security privileges, so make
sure that you have appropriate RBAC in place to stop unwanted
workloads using your permissive policies.

e Do you want to enable PodSecurityPolicy on an existing cluster? Use
this handy open source tool to generate policies based on your current
resources. This is a great start. From there, you can hone your policies.

PodSecurityPolicy Next Steps

As demonstrated, PodSecurityPolicy is an extremely powerful API to assist in
keeping your cluster secure, but it demands a high tax for use. With careful

https://oreil.ly/2XLne

planning and a pragmatic approach, PodSecurityPolicy can be successfully
implemented on any cluster. At the very least, it will keep your security team

happy.

Workload Isolation and RuntimeClass

Container runtimes are still largely considered an insecure workload isolation
boundary. There is no clear path to whether the most common runtimes of today
will ever be recognized as secure. The momentum and interest among those in
the industry toward Kubernetes has led to the development of different container
runtimes that offer varying levels of isolation. Some are based on familiar and
trusted technology stacks, whereas others are a completely new attempt to tackle
the problem. Open source projects like Kata containers, gVisor, and Firecracker
tout the promise of stronger workload isolation. These specific projects are either
based on nested virtualization (running a super lightweight virtual machine
within a virtual machine) or system call filtering and servicing.

The introduction of these container runtimes that offer different workload
isolation allows users to choose many different runtimes based on their isolation
guarantees in the same cluster. For example, you could have trusted and
untrusted workloads running in the same cluster in different container runtimes.

RuntimeClass was introduced into Kubernetes as an API to allow container
runtime selection. It is used to represent one of the supported container runtimes
on the cluster when it has been configured by the cluster administrator. As a
Kubernetes user, you can define specific runtime classes for your workloads by
using the RuntimeClassName in the pod specification. How this is implemented
under the hood is that the RuntimeClass designates a RuntimeHandler which is
passed to the Container Runtime Interface (CRI) to implement. Node labeling or
node taints then can be used in conjunction with nodeSelectors or tolerations to
ensure that the workload lands on a node capable of supporting the desired
RuntimeClass. Figure 10-1 demonstrates how a kubelet uses RuntimeClass when
launching pods.

Kubelet

CRI

\ 4
containerd or cri-o

RuntimeClass

v v v

runc kata-runtime runsc
Pod Pod Pod Pod

QEMU VM QEMUVM | |gVisor Sandboxed
Container

Figure 10-1. RuntimeClass flow diagram

NOTE

The RuntimeClass API is under active development. For the latest updates on the feature
state, visit the upstream documentation.

Using RuntimeClass

If a cluster administrator has set up different RuntimeClasses, you can use them

https://oreil.ly/N3KbO

simply by specifying runtimeClassName in the pod specification; for example:

apiVersion: vl
kind: Pod
metadata:
name: nginx
spec:
runtimeClassName: firecracker

Runtime Implementations

Following are some open source container runtime implementations that offer
different levels of security and isolation for your consideration. This list is
intended as a guide and is by no means exhaustive:

CRI containerd
An API facade for container runtimes with an emphasis on simplicity,
robustness, and portability.

Ccri-o
A purpose-built, lightweight Open Container Initiative (OCI)-based
implementation of a container runtime for Kubernetes.

Firecracker

Built on top of the Kernel-based Virtual Machine (KVM), this virtualization
technology allows you to launch microVMs in nonvirtualized environments
very quickly using the security and isolation of traditional VMs.

gVisor

An OCI-compatible sandbox runtime that runs containers with a new user-
space kernel, which provides a low overhead, secure, isolated container
runtime.

Kata Containers

A community that’s building a secure container runtime that provides VM-
like security and isolation by running lightweight VMs that feel and operate
like containers.

https://oreil.ly/1wxU1
https://cri-o.io/
https://oreil.ly/on3Ge
https://gvisor.dev/
https://katacontainers.io/

Workload Isolation and RuntimeClass Best Practices

The following best practices will help you to avoid common workload isolation
and RuntimeClass pitfalls:

e Implementing different workload isolation environments via
RuntimeClass will complicate your operational environment. This
means that workloads might not be portable across different container
runtimes given the nature of the isolation they provide. Understanding
the matrix of supported features across different runtimes can be
complicated to understand and will lead to poor user experience. We
recommend having separate clusters, each with a single runtime to
avoid confusion, if possible.

e Workload isolation doesn’t mean secure multitenancy. Even though you
might have implemented a secure container runtime, this doesn’t mean
that the Kubernetes cluster and APIs have been secured in the same
fashion. You must consider the total surface area of Kubernetes end to
end. Just because you have an isolated workload doesn’t mean that it
cannot be modified by a bad actor via the Kubernetes API.

¢ Tooling across different runtimes is inconsistent. You might have users
who rely on container runtime tooling for debugging and introspection.
Having different runtimes means that you might no longer be able to

run docker ps to list running containers. This leads to confusion and
complications when troubleshooting.

Other Pod and Container Security
Considerations

In addition to PodSecurityPolicy and workload isolation, here are some other
tools you may consider when determining how to handle pod and container
security.

Admission Controllers

If you’re worried about diving into the deep end with PodSecurityPolicy, here

are some options that offer a fraction of the functionality but might offer a viable
alternative. You can use admission controllers such as DenyExecOnPrivileged
and DenyEscalatingExec in conjunction with an admission webhook to add
SecurityContext workload settings to achieve a similar outcome. For more
information on admission control, refer to Chapter 17.

Intrusion and Anomaly Detection Tooling

We’ve covered security policies and container runtimes, but what happens when
you want to introspect and enforce policy within the container runtime? There
are open source tools that can do this and more. They operate by either listening
and filtering Linux system calls or by utilizing a Berkeley Packet Filter (BPF).
One such tool is Falco. Falco is a Cloud Native Computing Foundation (CNCF)
project that simply installs as a Demonset and allows you to configure and
enforce policy during execution. Falco is just one approach. We encourage you
to take a look at the tooling in this space to see what works for you.

Summary

In this chapter, we covered in depth both the PodSecurityPolicy and the
RuntimeClass APIs with which you can configure a granular level of security for
your workloads. We have also taken a look at some open source ecosystem
tooling that you can use to monitor and enforce policy within the container
runtime. We have provided a thorough overview for you to make an informed
decision about providing the level of security that is best suited for your
workload needs.

https://falco.org/

Chapter 11. Policy and
Governance for Your Cluster

Have you ever wondered how you can ensure that all containers running on a
cluster come only from an approved container registry? Or maybe you’ve been
asked to ensure that services are never exposed to the internet. These are
precisely the problems that policy and governance for your cluster set out to
answer. As Kubernetes matures and becomes adopted by more and more
enterprises, the question of policy and governance is becoming increasingly
frequent. Although this area is still relatively new and upcoming, in this chapter
we share what you can do to make sure that your cluster is in compliance with
the defined policies of your enterprise.

Why Policy and Governance Are Important

Whether you operate in a highly regulated environment—for example, health
care or financial services—or you simply want to make sure that you maintain a
level of control over what’s running on your clusters, you’re going to need a way
to implement the stated policies of the enterprise. After these policies are
defined, you will need to determine how to implement policy and maintain
clusters that are compliant to these policies. These policies might be in place to
meet regulatory compliance or simply to enforce best practices. Whatever the
reason, you must be sure that you do not sacrifice developer agility and self-
service when implementing these policies.

How Is This Policy Different?

In Kubernetes, policy is everywhere. Whether it be network policy or pod
security policy, we’ve all come to understand what policy is and when to use it.
We trust that whatever is declared in Kubernetes resource specifications is
implemented as per the policy definition. Both network policy and pod security
policy are implemented at runtime. However, who manages the content that is

actually defined in these Kubernetes resource specifications? That’s the job for
policy and governance. Rather than implementing policy at runtime, when we
talk about policy in the context of governance, what we mean is defining policy
that controls the fields and values in the Kubernetes resource specifications
themselves. Only Kubernetes resource specifications that are compliant against
these policies are allowed and committed to the cluster state.

Cloud-Native Policy Engine

To be able to make decisions about what resources are compliant, we need a
policy engine that is flexible enough to meet a variety of needs. The Open Policy
Agent (OPA) is an open source, flexible, lightweight policy engine that has
become increasingly popular in the cloud-native ecosystem. Having OPA in the
ecosystem has allowed many implementations of different Kubernetes
governance tools to appear. One such Kubernetes policy and governance project
the community is rallying around is called Gatekeeper. For the rest of this
chapter, we use Gatekeeper as the canonical example to illustrate how you might
achieve policy and governance for your cluster. Although there are other
implementations of policy and governance tools in the ecosystem, they all seek
to provide the same user experience (UX) by allowing only compliant
Kubernetes resource specifications to be committed to the cluster.

Introducing Gatekeeper

Gatekeeper is an open source customizable Kubernetes admission webhook for
cluster policy and governance. Gatekeeper takes advantage of the OPA constraint
framework to enforce custom resource definition (CRD)-based policies. Using
CRDs allows for an integrated Kubernetes experience that decouples policy
authoring from implementation. Policy templates are referred to as constraint
templates, which can be shared and reused across clusters. Gatekeeper enables
resource validation and audit functionality. One of the great things about
Gatekeeper is that it’s portable, which means that you can implement it on any
Kubernetes clusters, and if you are already using OPA, you might be able to port
that policy over to Gatekeeper.

https://www.openpolicyagent.org
https://oreil.ly/RvKUw

NOTE

Gatekeeper is still under active development and is subject to change. For the most recent
updates on the project, visit the official upstream repository.

Example Policies

It’s important not to become too stuck in the weeds and actually consider the
problem that we are trying to solve. Let’s take a look at some policies that solve
some of the most common compliance issues for context:

e Services must not be exposed publicly on the internet.

Allow containers only from trusted container registries.

All containers must have resource limits.

Ingress hostnames must not overlap.

Ingresses must use only HTTPS.

Gatekeeper Terminology

Gatekeeper has adopted much of the same terminology as OPA. It’s important
that we cover what that terminology is so that you can understand how
Gatekeeper operates. Gatekeeper uses the OPA constraint framework. Here, we
introduce three new terms:

e (Constraint
e Rego

e Constraint template

Constraint

The best way to think about constraints is as restrictions that you apply to
specific fields and values of Kubernetes resource specifications. This is really
just a long way of saying policy. This means that when constraints are defined,
you are effectively stating that you DO NOT want to allow this. The implications
of this approach mean that resources are implicitly allowed without a constraint

https://oreil.ly/Rk8dc

that issues a deny. This is important because instead of allowing the Kubernetes
resources specification fields and values you want, you are denying only the
ones you do not want. This architectural decision suits Kubernetes resource
specifications nicely because they are ever changing.

Rego

Rego is an OPA-native query language. Rego queries are assertions on the data
stored in OPA. Gatekeeper stores rego in the constraint template.

Constraint template

You can think of this as a policy template. It’s portable and reusable. Constraint
templates consist of typed parameters and the target rego that is parameterized
for reuse.

Defining Constraint Templates

Constraint templates are a Custom Resource Definition (CRD) that provide a
means of templating policy so that it can be shared or reused. In addition,
parameters for the policy can be validated. Let’s take a look at a constraint
template in the context of the earlier examples. In the following example, we
share a constraint template that provides the policy “Only allow containers from
trusted container registries”:

apiVersion: templates.gatekeeper.sh/vialphal
kind: ConstraintTemplate
metadata:
name: k8sallowedrepos
spec:
crd:
spec:
names:
kind: K8sAllowedRepos
listKind: K8sAllowedReposlList
plural: k8sallowedrepos
singular: k8sallowedrepos
validation:
Schema for the ‘parameters’ field
openAPIV3Schema:
properties:
repos:
type: array

https://oreil.ly/LQSAH

items:
type: string
targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8sallowedrepos

deny[{"msg": msg}] {
container := input.review.object.spec.containers[_]

satisfied := [good | repo = input.constraint.spec.parameters.repos[_] ;
good = startswith(container.image, repo)]

not any(satisfied)
msg := sprintf("container <%v> has an invalid image repo <%v>, allowed

repos are %v", [container.name, container.image,
input.constraint.spec.parameters.repos])

}

The constraint template consists of three main components:
Kubernetes-required CRD metadata

The name is the most important part. We reference this later.

Schema for input parameters

Indicated by the validation field, this section defines the input parameters
and their associated types. In this example, we have a single parameter called

repo that is an array of strings.
Policy definition

Indicated by the target field, this section contains templated rego (the
language to define policy in OPA). Using a constraint template allows the
templated rego to be reused and means that generic policy can be shared. If
the rule matches, the constraint is violated.

Defining Constraints

To use the previous constraint template, we must create a constraint resource.
The purpose of the constraint resource is to provide the necessary parameters to
the constraint template that we created earlier. You can see that the kind of the
resource defined in the following example is K8sAllowedRepos, which maps to
the constraint template defined in the previous section:

apiVersion: constraints.gatekeeper.sh/vialphal
kind: K8sAllowedRepos
metadata:
name: prod-repo-is-openpolicyagent
spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Pod"]
namespaces:
- "production"
parameters:
repos:
- "openpolicyagent"

The constraint consists of two main sections:

Kubernetes metadata

Notice that this constraint is of kind K8sAllowedRepos, which matches the
name of the constraint template.

The spec

The match field defines the scope of intent for the policy. In this example,
we are matching pods only in the production namespace.

The parameters define the intent for the policy. Notice that they match the
type from the constraint template schema from the previous section. In this
case, we allow only container images that start with openpolicyagent.

Constraints have the following operational characteristics:
e Logically AND-ed together

» When multiple policies validate the same field, if one violates
then the whole request is rejected

e Schema validation that allows early error detection
e Selection criteria
= Can use label selectors

m Constrain only certain kinds

m Constrain only in certain namespaces

Data Replication

In some cases, you might want to compare the current resource against other
resources that are in the cluster, for example, in the case of “Ingress hostnames
must not overlap.” OPA needs to have all of the other Ingress resources in its

cache in order to evaluate the rule. Gatekeeper uses a config resource to
manage which data is cached in OPA in order to perform evaluations such as the

one previously mentioned. In addition, config resources are also used in the
audit functionality, which we explore a bit later on.

The following example config resource caches v1 service, pods, and
namespaces:

apiVersion: config.gatekeeper.sh/vialphal
kind: Config
metadata:
name: config
namespace: gatekeeper-system
spec:
Sync:
syncOnly:
- kind: Service
version: vi
- kind: Pod
version: vi
- kind: Namespace
version: vi

UX

Gatekeeper enables real-time feedback to cluster users for resources that violate
defined policy. If we consider the example from the previous sections, we allow

containers only from repositories that start with openpolicyagent.

Let’s try to create the following resource; it is not compliant given the current
policy:

apiVersion: vi
kind: Pod
metadata:

name: opa
namespace: production
spec:
containers:
- name: opa
image: quay.ilo/opa:0.9.2

This gives you the violation message that’s defined in the constraint template:

$ kubectl create -f bad_resources/opa_wrong_repo.yaml

Error from server (contailner <opa> has an invalid image repo <quay.io/opa:0.9.2>,
allowed repos are ["openpolicyagent"]): error when creating
"bad_resources/opa_wrong_repo.yaml": admission webhook "validation.gatekeeper.sh"
denied the request: container <opa> has an invalid image repo <quay.io/opa:0.9.2>,
allowed repos are ["openpolicyagent"]

Audit

Thus far, we have discussed only how to define policy and have it enforced as
part of the request admission process. How do you handle a cluster that already
has resources deployed where you want to know what is in compliance with the
defined policy? That is exactly what audit sets out to achieve. When using audit,
Gatekeeper periodically evaluates resources against the defined constraints. This
helps with the detection of misconfigured resources according to policy and
allows for remediation. The audit results are stored in the status field of the
constraint, making them easy to find by simply using kubectl. To use audit, the
resources to be audited must be replicated. For more details, refer to “Data
Replication™.

Let’s take a look at the constraint called prod-repo-is-openpolicyagent that
you defined in the previous section:

$ kubectl get k8sallowedrepos prod-repo-is-openpolicyagent -o yaml
apiVersion: constraints.gatekeeper.sh/vialphal
kind: K8sAllowedRepos
metadata:
creationTimestamp: "2019-06-04T06:05:05Z"
finalizers:
- finalizers.gatekeeper.sh/constraint
generation: 2820
name: prod-repo-is-openpolicyagent
resourceVersion: "4075433"

selfLink: /apis/constraints.gatekeeper.sh/vialphal/k8sallowedrepos/prod-repo-is-
openpolicyagent
uid: b291e054-868e-11e9-868d-000d3afdb27e
spec:
match:
kinds:
- apiGroups:
kinds:
- Pod
namespaces:
- production
parameters:
repos:
- openpolicyagent
status:
auditTimestamp: "2019-06-05T05:51:16Z"
enforced: true
violations:
- kind: Pod
message: container <nginx> has an invalid image repo <nginx>, allowed repos are
["openpolicyagent"]
name: nginx
namespace: production

Upon inspection, you can see the last time the audit ran in the auditTimestamp
field. We also see all of the resources that violate this constraint under the

violations field.

Becoming Familiar with Gatekeeper

The Gatekeeper repository ships with fantastic demonstration content that walks
you through a detailed example of building policies to meet compliance for a
bank. We would strongly recommend walking through the demonstration for a
hands-on approach to how Gatekeeper operates. You can find the demonstration
in this Git repository.

Gatekeeper Next Steps

The Gatekeeper project is continuing to grow and is looking to solve other
problems in the areas of policy and governance, which includes features like
these:

https://oreil.ly/GcR3i

Mutation (modifying resources based on policy; for example, add these
labels)

External data sources (integration with Lightweight Directory Access
Protocol [LDAP] or Active Directory for policy lookup)

Authorization (using Gatekeeper as a Kubernetes authorization module)

Dry run (allow users to test policy before making it active in a cluster)

If these sound like interesting problems that you might be willing to help solve,
the Gatekeeper community is always looking for new users and contributors to
help shape the future of the project. If you would like to learn more, head over to
the upstream repository on GitHub.

Policy and Governance Best Practices

You should consider the following best practices when implementing policy and
governance on your clusters:

If you want to enforce a specific field in a pod, you need to make a
determination of which Kubernetes resource specification you want to
inspect and enforce. Let’s consider the case of Deployments, for
example. Deployments manage ReplicaSets, which manage pods. We
could enforce at all three levels, but the best choice is the one that is the
lowest handoff point before the runtime, which in this case is the pod.
This decision, however, has implications. The user-friendly error
message when we try to deploy a noncompliant pod, as seen in “UX?”, is
not going to be displayed. This is because the user is not creating the
noncompliant resource, the ReplicaSet is. This experience means that
the user would need to determine that the resource is not compliant by
running a kubectl describe on the current ReplicaSet associated with
the Deployment. Although this might seem cumbersome, this is
consistent behavior with other Kubernetes features, such as pod security
policy.

Constraints can be applied to Kubernetes resources on the following
criteria: kinds, namespaces, and label selectors. We would strongly

https://oreil.ly/Rk8dc

recommend scoping the constraint to the resources to which you want it
to be applied as tightly as possible. This ensures consistent policy
behavior as the resources on the cluster grow, and means that resources
that don’t need to be evaluated aren’t being passed to OPA, which can
result in other inefficiencies.

e Synchronizing and enforcing on potentially sensitive data such as
Kubernetes secrets is not recommended. Given that OPA will hold this
in its cache (if it is configured to replicate that data) and resources will
be passed to Gatekeeper, it leaves surface area for a potential attack
vector.

¢ If you have many constraints defined, a deny of constraint means that
the entire request is denied. There is no way to make this function as a
logical OR.

Summary

In this chapter, we covered why policy and governance are important and walked
through a project that’s built upon OPA, a cloud-native ecosystem policy engine,
to provide a Kubernetes-native approach to policy and governance. You should
now be prepared and confident the next time the security teams asks, “Are our
clusters in compliance with our defined policy?”

Chapter 12. Managing Multiple
Clusters

In this chapter, we discuss best practices for managing multiple Kubernetes
clusters. We dive into the details of the differences between multicluster
management and federation, tools to manage multiple clusters, and operational
patterns for managing multiple clusters.

You might wonder why you would need multiple Kubernetes clusters;
Kubernetes was built to consolidate many workloads to a single cluster, correct?
This is true, but there are scenarios such as workloads across regions, concerns
of blast radius, regulatory compliance, and specialized workloads.

We discuss these scenarios and explore the tools and techniques for managing
multiple clusters in Kubernetes.

Why Multiple Clusters?

When adopting Kubernetes, you will likely have more than one cluster, and you
might even start with more than one cluster to break out production from
staging, user acceptance testing (UAT), or development. Kubernetes provides
some multitenancy features with namespaces, which are a logical way to break
up a cluster into smaller logical constructs. Namespaces allow you to define
Role-Based Access Control (RBAC), quotas, pod security policies, and network
policies to allow separation of workloads. This is a great way to separate out
multiple teams and projects, but there are other concerns that might require you
to build a multicluster architecture. Following are concerns to think about when
deciding to use multicluster versus a single-cluster architecture:

e Blast radius
e Compliance

e Security

e Hard multitenancy
¢ Regional-based workloads

e Specialized workloads

When thinking through your architecture, blast radius should come front and
center. This is one of the main concerns that we see with users designing for
multicluster architectures. With microservice architectures we employ circuit
breakers, retries, bulkheads, and rate limiting to constrain the extent of damage
to our systems. You should design the same into your infrastructure layer, and
multiple clusters can help with preventing the impact of cascading failures due to
software issues. For example, if you have one cluster that serves 500
applications and you have a platform issue, it takes out 100% of the 500
applications. If you had a platform layer issue with 5 clusters serving those 500
applications, you affect only 20% of the applications. The downside to this is
that now you need to manage five clusters, and your consolidation ratios will not
be as good with a single cluster. Dan Woods wrote a great article about an actual
cascading failure in a production Kubernetes environment. It is a great example
of why you will want to consider multicluster architectures for larger
environments.

Compliance is another area of concern for multicluster design because there are
special considerations for Payment Card Industry (PCI), Health Insurance
Portability and Accountability (HIPAA), and other workloads. It’s not that
Kubernetes doesn’t provide some multitenant features, but these workloads
might be easier to manage if they are segregated out from general purpose
workloads. These compliant workloads might have specific requirements with
respect to security hardening, nonshared components, or dedicated workload
requirements. It’s just much easier to separate these workloads than have to treat
the cluster in such a specialized fashion.

Security in large Kubernetes clusters can become difficult to manage. As you
start onboarding more and more teams to a Kubernetes cluster each team may
have different security requirements and it can become very difficult to meet
those needs in a large multi-tenant cluster. Even just managing RBAC, network
policies, and pod security policies can become difficult at scale in a single
cluster. A small change to a network policy can inadvertently open up security

https://oreil.ly/YnGUD

risk to other users of the cluster. With multiple clusters you can limit the security
impact with a misconfiguration. If you decide that a larger Kubernetes cluster
fits your requirements, then ensure that you have a very good operational
process for making security changes and understand the blast radius of making a
change to RBAC, network policy, and pod security policies.

Kubernetes doesn’t provide hard multitenancy because it shares the same API
boundary with all workloads running within the cluster. With namespacing this
gives us good soft multitenancy, but not enough to protect against hostile
workloads within the cluster. Hard multitenancy is not a requirement for a lot of
users; they trust the workloads that will be running within the cluster. Hard
multitenancy is typically a requirement if you are a cloud provider, hosting
Software as a Service (SaaS)-based software or untrusted workloads with
untrusted user control.

When running workloads that need to serve traffic from in-region endpoints,
your design will include multiple clusters that are based per region. When you
have a globally distributed application, it becomes a requirement at that point to
run multiple clusters. When you have workloads that need to be regionally
distributed, it’s a great use case for cluster federation of multiple clusters, which
we dig into further later in this chapter.

Specialized workloads, such as high-performance computing (HPC), machine
learning (ML), and grid computing, also need to be addressed in the multicluster
architecture. These types of specialized workloads might require specific types
of hardware, have unique performance profiles, and have specialized users of the
clusters. We’ve seen this use case to be less prevalent in the design decision
because having multiple Kubernetes node pools can help address specialized
hardware and performance profiles. When you have the need for a very large
cluster for an HPC or machine learning workload, you should take into
consideration just dedicating clusters for these workloads.

With multicluster, you get isolation for “free,” but it also has design concerns
that you need to address at the outset.

Multicluster Design Concerns

When choosing a multicluster design there are some challenges that you’ll run

into. Some of these challenges might deter you from attempting a multicluster
design given that the design might overcomplicate your architecture. Some of
the common challenges we find users running into are:

¢ Data replication

e Service discovery

e Network routing

e Operational management
e Continuous deployment

Data replication and consistency has always been the crux of deploying
workloads across geographical regions and multiple clusters. When running
these services, you need to decide what runs where and develop a replication
strategy. Most databases have built-in tools to perform the replication, but you
need to design the application to be able to handle the replication strategy. For
NoSQL-type database services this can be easier because they can can handle
scaling across multiple instances, but you still need to ensure that your
application can handle eventual consistency across geographic regions or at least
the latency across regions. Some cloud services, such as Google Cloud Spanner
and Microsoft Azure CosmosDB, have built database services to help with the
complications of handling data across multiple geographic regions.

Each Kubernetes cluster deploys its own service discovery registry, and registries
are not synchronized across multiple clusters. This complicates applications
being able to easily identify and discover one another. Tools such as HashiCorp’s
Consul can transparently synchronize services from multiple clusters and even
services that reside outside of Kubernetes. There are other tools like Istio,
Linkerd, and Cillium that are building on multiple cluster architectures to extend
service discovery between clusters.

Kubernetes makes networking from within the cluster very easy, as it’s a flat
network and avoids using network address translation (NAT). If you need to
route traffic in and out of the cluster, this becomes more complicated. Ingress
into the cluster is implemented as a 1:1 mapping of ingress to the cluster because
it doesn’t support multicluster topologies with the Ingress resource. You’ll also

need to consider the egress traffic between clusters and how to route that traffic.
When your applications reside within a single cluster this is easy, but when
introducing multicluster, you need to think about the latency of extra hops for
services that have application dependencies in another cluster. For applications
that have tightly coupled dependencies, you should consider running these
services within the same cluster to remove latency and extra complexity.

One of the biggest overheads to managing multiclusters is the operational
management. Instead of one or a couple of clusters to manage and keep
consistent, you might now have many clusters to manage in your environment.
One of the most important aspects to managing multiclusters is ensuring that you
have good automation practices in place because this will help to reduce the
operational burden. When automating your clusters, you need to take into
account the infrastructure deployment and managing add-on features to your
clusters. For managing the infrastructure, using a tool like HashioCrp’s
Terraform can help with deploying and managing a consistent state across your
fleet of clusters.

Using an Infrastructure as Code (1aC) tool like Terraform will give you the
benefit of providing a reproducible way to deploy your clusters. On the other
hand, you also need to be able to consistently manage add-ons to the cluster,
such as monitoring, logging, ingress, security, and other tools. Security is also an
important aspect of operational management, and you must be able to maintain
security policies, RBAC, and network policies across clusters. Later in this
chapter, we dive deeper into the topic of maintaining consistent clusters with
automation.

With multiple clusters and Continuous Delivery (CD), you now need to deal with
multiple Kubernetes API endpoints versus a single API endpoint. This can cause
challenges in the distribution of applications. You can easily manage multiple
pipelines, but suppose that you have a hundred different pipelines to manage,
which can make application distribution very difficult. With this in mind, you
need to look at different approaches to managing this situation. We take a look at
solutions to help manage this later in the chapter.

Managing Multiple Cluster Deployments

One of the first steps that you want to take when managing multicluster
deployments is to use an [oC tool like Terraform to set up deployments. Other
deployment tools, such as kubespray, kops, or other cloud provider—specific
tools, are all valid choices but, most importantly, use a tool that allows you to
source control your cluster deployment for repeatability.

Automation is key to successfully managing multiple clusters in your
environment. You might not have everything automated on day one, but you
should make it a priority to automate all aspects of your cluster deployments and
operations.

An interesting project in development is the Kubernetes Cluster API. The
Cluster API is a Kubernetes project to bring declarative, Kubernetes-style APIs
to cluster creation, configuration, and management. It provides optional, additive
functionality on top of core Kubernetes. The Cluster API provides a cluster-level
configuration declared through a common API, which will give you the ability to
easily automate and build tooling around cluster automation. As of this writing,
the project is still in development, so make sure to keep an eye out for it as it
matures.

Deployment and Management Patterns

Kubernetes operators were introduced as an implementation of the Infrastructure
as Software concept. Using them allows you to abstract the deployment of
applications and services in a Kubernetes cluster. For example, suppose that you
want to standardize on Prometheus for monitoring your Kubernetes clusters. You
would need to create and manage various objects (deployment, service, ingress,
etc.) for each cluster and team. You would also need to maintain the fundamental
configurations of Prometheus, such as versions, persistence, retention policies,
and replicas. As you can imagine, the maintenance of such a solution could be
difficult across a large number of clusters and teams.

Instead of dealing with so many objects and configurations, you could install the
prometheus-operator. This extends the Kubernetes API, exposing multiple
new object kinds called Prometheus, ServiceMonitor, PrometheusRule, and
AlertManager, which allow you to specify all of the details of a Prometheus
deployment using just a few objects. You can use the kubect1 tool to manage

https://oreil.ly/edzIa

such objects, just as it manages any other Kubernetes API object.

Figure 12-1 shows the architecture of the prometheus-operator.

__________________________ Service

ServiceMonitor 1 Service2

.
|
|
|
|
|
I
: Prometheus
I
I
|
|
|
[8

|
: Service 3
|
: Service 4
ServiceMonitor 2 <<:
A I Service5
___________________ _l e |
twatch
Operator - i p_lo}*
& manage

Figure 12-1. prometheus-operator architecture

Utilizing the Operator pattern for automating key operational tasks can help
improve your overall cluster management capabilities. The Operator pattern was
introduced by the CoreOS team in 2016 with the etcd operator and prometheus-
operator. The Operator pattern builds on two concepts:

e (Custom resource definitions

e Custom controllers

Custom resource definitions (CRDs) are objects that allow you to extend the
Kubernetes API, based on your own API that you define.

Custom controllers are built on the core Kubernetes concepts of resources and
controllers. Custom controllers allow you to build your own logic by watching
events from Kubernetes API objects such as namespaces, Deployments, pods, or
your own CRD. With custom controllers, you can build your CRDs in a
declarative way. If you consider how the Kubernetes Deployment controller
works in a reconciliation loop to always maintain the state of the deployment

object to maintain its declarative state, this brings the same advantages of
controllers to your CRDs.

When utilizing the Operator pattern, you can build in automation to operational
tasks that need to be performed on operational tooling in multiclusters. Let’s take
the following Elasticsearch operator as an example. As in Chapter 3, we utilized
the Elasticsearch, Logstash, and Kibana (ELK) stack to perform log aggregation
of our cluster. The Elasticsearch operator can perform the following operations:

e Replicas for master, client, and data nodes

Zones for highly available deployments

Volume sizes for master and data nodes

Resizing of cluster

Snapshot for backups of the Elasticsearch cluster

As you can see, the operator provides automation for many tasks that you would
need to perform when managing Elasticsearch, such as automating snapshots for
backup and resizing the cluster. The beauty of this is that you manage all of this
through familiar Kubernetes objects.

Think about how you can take advantage of different operators like the
prometheus-operator in your environment and also how you can build your
own custom operator to offload common operational tasks.

The GitOps Approach to Managing Clusters

GitOps was popularized by the folks at Weaveworks, and the idea and
fundamentals were based on their experience of running Kubernetes in
production. GitOps takes the concepts of the software development life cycle
and applies them to operations. With GitOps, your Git repository becomes your
source of truth, and your cluster is synchronized to the configured Git repository.
For example, if you update a Kubernetes Deployment manifest, those
configuration changes are automatically reflected in the cluster state.

By using this method, you can make it easier to maintain multiclusters that are
consistent and avoid configuration drift across the fleet. GitOps allows you to

https://oreil.ly/9WvJQ

declaratively describe your clusters for multiple environments and drives to
maintain that state for the cluster. The practice of GitOps can apply to both
application delivery and operations, but in this chapter, we focus on using it to
manage clusters and operational tooling.

Weaveworks Flux was one of the first tools to enable the GitOps approach, and
it’s the tool we will use throughout the rest of the chapter. There are many new
tools that have been released into the cloud-native ecosystem that are worth a
look, such as Argo CD, from the folks at Intuit, which has also been widely
adopted for the GitOps approach.

Figure 12-2 presents a representation of a GitOps workflow.

Code
Commit

- Github
Repo

cl

Trigger Build Push
Build Image

- Docker
Registry

Pull
Request

Synchronize

Kubernetes
Cluster

Figure 12-2. GitOps workflow

So, let’s get Flux set up in your cluster and get a repository synchronized to the
cluster:

git clone https://github.com/weaveworks/flux
cd flux

You now need to make a change to the Deployment manifest to configure it with
your forked repo from Chapter 6. Modify the following line in the Deployment
file to match your forked GitHub repository:

vim deploy/flux-deployment.yaml
Modify the following line with your Git repository:

--git-url=git@github.com:weaveworks/flux-get-started (ex. --git-
url=git@github.com:your_repo/kbp)

Now, go ahead and deploy Flux to your cluster:
kubectl apply -f deploy

When Flux installs, it creates an SSH key so that it can authenticate with the Git
repository. Use the Flux command-line tool to retrieve the SSH key so that you
can configure access to your forked repository; first, you need to install
fluxctl.

For MacOS:
brew install fluxctl

For Linux Snap Packages:
snap install fluxctl

For all other packages, you can find the latest binaries here:
fluxctl identity

Open GitHub, navigate to your fork, go to Setting > “Deploy keys,” click “Add
deploy key,” give it a Title, select the “Allow write access” checkbox, paste the
Flux public key, and then click “Add key.” See the GitHub documentation for
more information on how to manage deploy keys.

Now, if you view the Flux logs, you should see that it is synchronizing with your
GitHub repository:

kubectl -n default logs deployment/flux -f

After you see that it’s synchronizing with your GitHub repository, you should
see that the Elasticsearch, Prometheus, Redis, and frontend pods are created:

kubectl get pods -w

With this example complete, you should be able to see how easy it is for you to
synchronize your GitHub repository state with your Kubernetes cluster. This

https://oreil.ly/4TAx5

makes managing the multiple operational tools in your cluster much easier,
because multiple clusters can synchronize with a single repository and remove
the situation of having snowflake clusters.

Multicluster Management Tools

When working with multiple clusters, using Kubectl can immediately become
confusing because you need to set different contexts to manage the different
clusters. Two tools that you will want to install right away when dealing with
multiple clusters are kubectx and kubens, which allow you to easily change
between multiple contexts and namespaces.

When you need a full-fleged multicluster management tool, there are a few
within the Kubernetes ecosystem to look at for managing multiple clusters.
Following is a summary of some of the more popular tools:

e Rancher centrally manages multiple Kubernetes clusters in a centrally
managed user interface (UI). It monitors, manages, backs up, and
restores Kubernetes clusters across on-premises, cloud, and hosted
Kubernetes setups. It also has tools for controlling applications
deployed across multiple clusters and provides operational tooling.

e KQueen provides a multitenant self-service portal for Kubernetes
cluster provisioning and focuses on auditing, visibility, and security of
multiple Kubernetes clusters. KQueen is an open source project that
was developed by the folks at Mirantis.

e Gardener takes a different approach to multicluster management in that
it utilizes Kubernetes primitives to provide Kubernetes as a Service to
your end users. It provides support for all major cloud vendors and was
developed by the folks at SAP. This solution is really geared toward
users who are building a Kubernetes as a Service offering.

Kubernetes Federation

Kubernetes first introduced Federation v1 in Kubernetes 1.3, and it has since
been deprecated in lieu of Federation v2. Federation v1 set out to help with the

distribution of applications to multiple clusters. Federation v1 was built utilizing
the Kubernetes API and heavily relied on Kubernetes annotations, which
imposed some problems in its design. The design was tightly coupled to the core
Kubernetes API, which made Federation v1 quite monolithic in nature. At the
time, the design decisions were probably not bad choices, but were built on the
primitives that were available. The introducton of Kubernetes CRDs allowed a
different way of thinking about how Federation could be designed.

Federation v2 (now called KubeFed) requires Kubernetes 1.11+ and is currently
in alpha as of this writing. Federation v2 is built around the concept of CRDs
and custom controllers, which allows you to extend Kubernetes with new APIs.
Building around CRDs allows Federation to have new API types and not be
restricted just to previous v1 deployment objects.

KubeFed is not necessarily about multicluster management, but providing high
availability (HA) deployments across multiple clusters. It allows you to combine
multiple clusters into a single management endpoint for delivering applications
on Kubernetes. For example, if you have a cluster that resides in multiple public
cloud environments, you can combine these clusters into a single control plane
to manage deployments to all clusters to increase the resiliency of your
application.

As of this writing, the following Federated resources are supported:
e Namespaces
e ConfigMaps
e Secrets
e Ingress
e Services
e Deployments
e ReplicaSets
e Horizontal Pod Autoscalers

e DaemonSets

e Jobs

To understand how this all works, let’s first take a look at the architecture in
Figure 12-3.

Kubernetes Federation

Vo T k
Cluster Azure | 1 namespace: appl !
I |
| |
: Secret Configmap Pods Deployment :
Cluster Google | 1 [
I |
e o oo e - l _______________________ I _____ 4
namespace: appl namespace: appl
Deployment Secret Deployment Secret
Pods Configmap Pods Configmap
Azure Google

Figure 12-3. Kubernetes Federation architecture

It’s important to understand that with Federation, not everything is just copied
down to all clusters. For example, with Deployments and ReplicaSets, you
define the number of replicas, which are then spread out across the clusters. This
is the default for Deployments, but you can change the configuration. On the
other hand, if you create a namespace, that namespace is cluster scoped and
created in each cluster. Secrets, ConfigMaps, and DaemonSets work the same
way and are copied down to each cluster. The Ingress resource is also different
from the aforementioned objects because it creates a global multicluster resource
with a single entry point into a service. As you can see from how KubeFed
works, the use cases Kubefed supports are multiregion, multicloud, and global
application deployments to Kubernetes.

Following is an example of a federated Deployment:

apiVersion: types.kubefed.io/vibetal
kind: FederatedDeployment
metadata:
name: test-deployment
namespace: test-namespace
spec:
template:
metadata:
labels:
app: nginx
spec:
replicas: 5
selector:
matchlLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- image: nginx
name: nginx
placement:
clusters:
- name: azure
- name: google

This example creates a federated Deployment of an NGINX pod with five
replicas, which are then spread across our clusters in Azure and another cluster
in Google.

Setting up federated Kubernetes clusters is beyond the scope of this book, but
you can learn more about the subject by referring to the KubeFed User Guide.

KubeFed is still in alpha, so keep an eye on it, but embrace the tools that you
already have or can implement now so that you can be successful with
Kubernetes HA and multicluster deployments.

Managing Multiple Clusters Best Practices

Consider the following best practices when managing multiple Kubernetes
clusters:

https://oreil.ly/tWmrY

Limit the blast radius of your clusters to ensure cascading failures don’t
have a bigger impact on your applications.

If you have regulatory concerns such as PCI, HIPPA, or HiTrust, think
about utilizing multiclusters to ease the complexity of mixing these
workloads with general workloads.

If hard multitenancy is a business requirement, workloads should be
deployed to a dedicated cluster.

If multiple regions are needed for your applications, utilize a Global
Load Balancer to manage traffic between clusters.

You can break out specialized workloads such as HPC into their own
individual clusters to ensure that the specialized needs for the workloads
are met.

If you’re deploying workloads that will be spread across multiple
regional datacenters, first ensure that there is a data replication strategy
for the workload. Multiple clusters across regions can be easy, but
replicating data across regions can be complicated, so ensure that there
is a sound strategy to handle asynchronous and synchronous workloads.

Utilize Kubernetes operators like the prometheus-operator or
Elasticsearch operator to handle automated operational tasks.

When designing your multicluster strategy, also consider how you will
do service discovery and networking between clusters. Service mesh
tools like HashiCorp’s Consul or Istio can help with networking across
clusters.

Be sure that your CD strategy can handle multiple rollouts between
regions or multiple clusters.

Investigate utilizing a GitOps approach to managing multiple cluster
operational components to ensure consistency between all clusters in
your fleet. The GitOps approach doesn’t always work for everyone’s
environment, but you should at least investigate it to ease the
operational burden of multicluster environments.

Summary

In this chapter, we discussed different strategies for managing multiple
Kubernetes clusters. It’s important to think about what your needs are at the
outset and whether those needs match a multicluster topology. The first scenario
to think about is whether you truly need hard multitenancy because this will
automatically require a multicluster strategy. If you don’t, consider your
compliance needs and whether you have the operational capacity to consume the
overhead of multicluster architectures. Finally, if you’re going with more,
smaller clusters, ensure that you put automation around the delivery and
management of them to reduce the operational burden.

Chapter 13. Integrating External
Services and Kubernetes

In many of the chapters in this book, we’ve discussed how to build, deploy, and
manage services in Kubernetes. However, the truth is that systems don’t exist in
a vaccum, and most of the services that we build will need to interact with
systems and services that exist outside of the Kubernetes cluster in which they’re
running. This might be because we are building new services that are being
accessed by legacy infrastructure running in virtual or physical machines.
Conversely, it might be because the services that we are building might need to
access preexisting databases or other services that are likewise running on
physical infrastructure in an on-premises datacenter. Finally, you might have
multiple different Kubernetes clusters with services that you need to
interconnect. For all of these reasons, the ability to expose, share, and build
services that span the boundary of your Kubernetes cluster is an important part
of building real-world applications.

Importing Services into Kubernetes

The most common pattern for connecting Kubernetes with external services
consists of a Kubernetes service that is consuming a service that exists outside of
the Kubernetes cluster. Often, this is because Kubernetes is being used for some
new application development or interface for a legacy resource like an on-
premises database. This pattern often makes the most sense for incremental
development of cloud-native services. Because the database layer contains
significant mission-critical data, it is a heavy lift to move it to the cloud, let
alone containers. At the same time, there is a great deal of value in providing a
modern layer on top of such a database (e.g., supplying a GraphQL interface) as
the foundation for building a new generation of applications. Likewise, moving
this layer to Kubernetes often makes a great deal of sense because rapid
development and reliable continuous deployment of this middleware enables a
great deal of agility with minimal risk. Of course, to achieve this, you need to

make the database accessible from within Kubernetes.

When we consider the task of making an external service accessible from
Kubernetes, the first challenge is simply to get the networking to work correctly.
The specific details of getting networking operational are very specific to both
the location of the database as well as the location of the Kubernetes cluster;
thus, they are beyond the scope of this book, but generally, cloud-based
Kubernetes providers enable the deployment of a cluster into a user-provided
virtual network (VINET), and those virtual networks can then be peered up with
an on-premises network for connectivity.

After you’ve established network connectivity between pods in the Kubernetes
cluster and the on-premises resource, the next challenge is to make the external
service look and feel like a Kubernetes service. In Kubernetes, service discovery
occurs via Domain Name System (DNS) lookups and, thus, to make our external
database feel like it is a native part of Kubernetes, we need to make the database
discoverable in the same DNS.

Selector-Less Services for Stable IP Addresses

The first way to achieve this is with a selector-less Kubernetes Service. When
you create a Kubernetes Service without a selector, there are no Pods that match
the service; thus, there is no load balancing performed. Instead, you can program
this selector-less service to have the specific IP address of the external resource
that you want to add to the Kubernetes cluster. That way, when a Kubernetes pod
performs a lookup for your-database, the built-in Kubernetes DNS server will
translate that to a service IP address of your external service. Here is an example
of a selector-less service for an external database:

apiVersion: vi
kind: Service
metadata:
name: my-external-database
spec:
ports:
- protocol: TCP
port: 3306
targetPort: 3306

When the service exists, you need to update its endpoints to contain the database
IP address serving at 24.1.2.3:

apiVersion: vi
kind: Endpoints
metadata:
Important! This name has to match the Service.
name: my-external-database
subsets:
- addresses:
- ip: 24.1.2.3
ports:
- port: 3306

Figure 13-1 depicts how this integrates together within Kubernetes.

Cluster Find Service ‘my-external-database’ »| my-external-database
DNS Server Service
Find Endpoints
Look up ‘my-external-database’ my-external-database
Pod » IP Address 24.1.2.3 my-external-database
Endpoints
Connectto 24.1.2.3

Database

Figure 13-1. Service integration

CNAME-Based Services for Stable DNS Names

The previous example assumed that the external resource that you were trying to
integrate with your Kubernetes cluster had a stable IP address. Although this is
often true of physical on-premises resources, depending on the network toplogy,
it might not always be true, and it is significantly less likely to be true in a cloud
environment where virtual machine (VM) IP addresses are more dynamic.
Alternatively, the service might have multiple replicas sitting behind a single

DNS-based load balancer. In these situations, the external service that you are
trying to bridge into your cluster doesn’t have a stable IP address, but it does
have a stable DNS name.

In such a situation, you can define a CNAME-based Kubernetes Service. If
you’re not familiar with DNS records, a CNAME, or Canonical Name, record is
an indication that a particular DNS address should be translated to a different
Canonical DNS name. For example, a CNAME record for foo.com that contains
bar.com indicates that anyone looking up foo.com should perform a recursive
lookup for bar.com to obtain the correct IP address. You can use Kubernetes
Services to define CNAME records in the Kubernetes DNS server. For example,
if you have an external database with a DNS name of database.myco.com, you
might create a CNAME Service that is named myco-database. Such a Service
looks like this:

kind: Service
apiVersion: vi
metadata:
name: my-external-database
spec:
type: ExternalName
externalName: database.myco.com

With a Service defined in this way, any pod that does a lookup for myco-
database will be recursively resolved to database.myco.com. Of course, to
make this work, the DNS name of your external resource also needs to be
resolveable from the Kubernetes DNS servers. If the DNS name is globally
accessible (e.g., from a well-known DNS service provider), this will simply
automatically work. However, if the DNS of the external service is located in a
company-local DNS server (e.g., a DNS server that services only internal
traffic), the Kubernetes cluster might not know by default how to resolve queries
to this corporate DNS server.

To set up the cluster’s DNS server to communicate with an alternate DNS
resolver, you need to adjust its configuration. You do this by updating a
Kubernetes ConfigMap with a configuration file for the DNS server. As of this
writing, most clusters have moved over to the CoreDNS server. This server is

configured by writing a Corefile configuration into a ConfigMap named

coredns in the kube-system namespace. If you are still using the kube-dns
server, it is configured in a similar manner but with a different ConfigMap.

CNAME records are a useful way to map external services with stable DNS
names to names that are discoverable within your cluster. At first it might seem
counterintuitive to remap a well-known DNS address to a cluster-local DNS
address, but the consistency of having all services look and feel the same is
usually worth the small amount of added complexity. Additionally, because the
CNAME service, like all Kubernetes services, is defined per namespace, you can
use namespaces to map the same service name (e.g., database) to different
external services (e.g., canary or production), depending on the Kubernetes
namespace.

Active Controller-Based Approaches

In a limited set of circumstances, neither of the previous methods for exposing
external services within Kubernetes is feasible. Generally, this is because there is
neither a stable DNS address nor a single stable IP address for the service that
you want to expose within the Kubernetes cluster. In such circumstances,
exposing the external service within the Kubernetes cluster is significantly more
complicated, but it isn’t impossible.

To achieve this, you need to have some understanding of how Kubernetes
Services work under the hood. Kubernetes Services are actually made up of two
different resources: the Service resource, with which you are doubtless familiar,
and the Endpoints resource that represents the IP addresses that make up the
service. In normal operation, the Kubernetes controller manager populates the
endpoints of a service based on the selector in the service. However, if you
create a selector-less service, as in the first stable-IP approach, the Endpoints
resource for the service will not be populated, because there are no pods that are
selected. In this situation, you need to supply the control loop to create and
populate the correct Endpoints resource. You need to dynamically query your
infrastructure to obtain the IP addresses for the service external to Kubernetes
that you want to integrate, and then populate your service’s endpoints with these
IP addresses. After you do this, the mechanisms of Kubernetes take over and
program both the DNS server and the kube-proxy correctly to load-balance
traffic to your external service. Figure 13-2 presents a complete picture of how

this works in practice.

Kubernetes)) External Service | External
DNS Server 4 AN < Controller P Resources
% 2, %
% % “s
<. e -
2 < 7S
%, 2 2
2. »00 " (2
2 % g
Yo < %,
%, S %,
(A <, S
@ <

Figure 13-2. An external service

Exporting Services from Kubernetes

In the previous section, we explored how to import preexisting services to
Kubernetes, but you might also need to export services from Kubernetes to the
preexisting environments. This might occur because you have a legacy internal
application for customer management that needs access to some new API that
you are developing in a cloud-native infrastructure. Alternately, you might be
building new microservice-based APIs but you need to interface with a
preexisting traditional web application firewall (WAF) because of internal policy
or regulatory requirements. Regardless of the reason, being able to expose
services from a Kubernetes cluster out to other internal applications is a critical
design requirement for many applications.

The core reason that this can be challenging is because in many Kubernetes
installations, the pod IP addresses are not routeable addresses from outside of the
cluster. Via tools like flannel, or other networking providers, routing is
established within a Kubernetes cluster to facilitate communication between
pods and also between nodes and pods, but the same routing is not generally
extended out to arbitrary machines in the same network. Furthermore, in the case
of cloud to on-premises connectivity, the IP addresses of the pods are not always
advertised back across a VPN or network peering relationship into the on-
premises network. Consequently, setting up routing between a traditional
application and Kubernetes pods is the key task to enable the export of
Kubernetes-based services.

Exporting Services by Using Internal Load Balancers

The easiest way to export from Kubernetes is by using the built-in Service
object. If you have had any previous experience with Kubernetes, you have no
doubt seen how you can connect a cloud-based load balancer to bring external
traffic to a collection of pods in the cluster. However, you might not have
realized that most clouds also offer an internal load balancer. The internal load
balancer provides the same capabilities to map a virtual IP address to a collection
of pods, but that virtual IP address is drawn from an internal IP address space
(e.g., 10.0.0.0/24) and thus is only routeable from within that virtual network.
You activate an internal load balancer by adding a cloud-specific annotation to
your Service load balancer. For example, in Microsoft Azure, you add the
service.beta.kubernetes.io/azure-load-balancer-internal: "true"
annotation. On Amazon Web Services (AWS), the annotation is
service.beta.kubernetes.io/aws-load-balancer-internal: 0.0.0.0/0.
You place annotations in the metadata field in the Service resource as follows:

apiVersion: vi
kind: Service
metadata:
name: my-service
annotations:
Replace this as needed in other environments
service.beta.kubernetes.io/azure-load-balancer-internal: "true"

When you export a Service via an internal load balancer, you receive a stable,
routeable IP address that is visible on the virtual network outside of the cluster.
You then can either use that IP address directly or set up internal DNS resolution
to provide discovery for your exported service.

Exporting Services on NodePorts

Unfortunately, in on-premises installations, cloud-based internal load balancers
are unavailable. In this context using a NodePort-based service is often a good
solution. A Service of type NodePort exports a listener on every node in the
cluster that forwards traffic from the node’s IP address and selected port into the
Service that you defined, as shown in Figure 13-3.

External Load

Balancer
' | '
Port 30919 Port 30919 Port 30919
Node Machine Node Machine Node Machine

Service Pod Service Pod

Figure 13-3. A NodePort-based service

Here’s an example YAML file for a NodePort service:

apiVersion: vi
kind: Service
metadata:

name: my-node-port-service

spec:
type: NodePort

Following the creation of a Service of type NodePort, Kubernetes automatically
selects a port for the service; you can get that port from the Service by looking at

the spec.ports[*].nodePort field. If you want to choose the port yourself,

you can specify it when you create the service, but the NodePort must be within
the configured range for the cluster. The default for this range are ports between

30000 and 30999.

Kubernetes’ work is done when the service is exposed on this port. To export it
to an existing application outside of the cluster, you (or your network

administrator) will need to make it discoverable. Depending on the way your
application is configured, you might be able to give your application a list of
${node}:${port} pairs, and the application will perform client-side load
balancing. Alternatively, you might need to configure a physical or virtual load
balancer within your network to direct traffic from a virtual IP address to this list
of ${node}:${port} backends. The specific details for this configuration will
be different depending on your environment.

Integrating External Machines and Kubernetes

If neither of the previous solutions work well for you—perhaps because you
want tighter integration for dynamic service discovery—the final choice for
exposing Kubernetes services to outside applications is to directly integrate the
machine(s) running the application into the Kubernetes cluster’s service
discovery and networking mechanisms. This is significantly more invasive and
complicated than either of the previous approaches, and you should use it only
when necessary for your application (which should be infrequent). In some
managed Kubernetes environments, it might not even be possible.

When integrating an external machine into the cluster for networking, you need
to ensure that the pod network routing and DNS-based service discovery both
work correctly. The easiest way to do this is actually to run the kubelet on the
machine that you want to join to the cluster, but disable scheduling in the cluster.
Joining a kubelet node to a cluster is beyond of the scope of this book, but there
are numerous other books or online resources that describe how to achieve this.
When the node is joined, you need to immediately mark it as unschedulable
using the kubectl cordon ... command to prevent any additional work being
scheduled on it. This cordoning will not prevent DaemonSets from landing pods
onto the node, and thus the pods for both the KubeProxy and network routing
will land on the machine and make Kubernetes-based services discoverable from
any application running on that machine.

The previous approach is quite invasive to the node because it requires installing
Docker or some other container runtime. Thus, it might not be feasible in many
environments. A lighter weight but more complex approach is to just run the
kube-proxy as a process on the machine and adjust the machine’s DNS server.
Assuming that you can set up pod routing to work correctly, running the kube -

proxy will set up machine-level networking so that Kubernetes Service virtual
IP addresses will be remapped to the pods that make up that Service. If you also
change the machine’s DNS to point to the Kubernetes cluster DNS server, you
will have effectively enabled Kubernetes discovery on a machine that is not part
of the Kubernetes cluster.

Both of these approaches are complicated and advanced, and you should not take
them lightly. If you find yourself considering this level of service discovery
integration, ask yourself whether it is possibly easier to actually bring the service
you are connecting to the cluster into the cluster itself.

Sharing Services Between Kubernetes

The previous sections have described how to connect Kubernetes applications to
outside services and how to connect outside services to Kubernetes applications,
but another significant use case is connecting services between Kubernetes
clusters. This may be to achieve East-West failover between different regional
Kubernetes clusters, or it might be to link together services run by different
teams. The process of achieving this interaction is actually a combination of the
designs described in the previous sections.

First, you need to expose the Service within the first Kubernetes cluster to enable
network traffic to flow. Let’s assume that you’re in a cloud environment that
supports internal load balancers, and that you receive a virtual IP address for that
internal load balancer of 10.1.10.1. Next, you need to integrate this virtual IP
address into the second Kubernetes cluster to enable service discovery. You
achieve this in the same manner as importing an external application into
Kubernetes (first section). You create a selector-less Service and you set its IP
address to be 10.1.10.1. With these two steps you have integrated service
discovery and connectivity between services within your two Kubernetes
clusters.

These steps are fairly manual, and although this might be acceptable for a small,
static set of services, if you want to enable tighter or automatic service
integration between clusters, it makes sense to write a cluster daemon that runs
in both clusters to perform the integration. This daemon would watch the first
cluster for Services with a particular annotation, say something like

myco.com/exported-service; all Services with this annotation would then be
imported into the second cluster via selector-less services. Likewise, the same
daemon would garbage-collect and delete any services that are exported into the
second cluster but are no longer present in the first. If you set up such daemons
in each of your regional clusters, you can enable dynamic, East-West
connectivity between all clusters in your environment.

Third-Party Tools

Thus far, this chapter has described the various ways to import, export, and
connect services that span Kubernetes clusters and some outside resource. If you
have previous experience with service mesh technologies, these concepts might
seem quite familiar to you. Indeed, there are a variety of third-party tools and
projects that you can use to interconnect services both with Kubernetes and with
arbitrary applications and machines. Generally, these tools can provide a lot of
functionality, but they are also significantly more complex operationally than the
approaches described just earlier. However, if you find yourself building more
and more networking interconnectivity, you should explore the space of service
meshes, which is rapidly iterating and evolving. Nearly all of these third-party
tools have an open source component, but they also offer commercial support
that can reduce the operational overhead of running additional infrastructure.

Connecting Cluster and External Services Best
Practices

¢ Establish network connectivity between the cluster and on-premises.
Networking can be varied between different sites, clouds, and cluster
configurations, but first ensure that pods can talk to on-premises
machines and vice versa.

e To access services outside of the cluster, you can use selector-less
services and directly program in the IP address of the machine (e.g., the
database) with which you want to communicate. If you don’t have fixed
IP addressess, you can instead use CNAME services to redirect to a
DNS name. If you have neither a DNS name nor fixed services, you

might need to write a dynamic operator that periodically synchronizes
the external service IP addresses with the Kubernetes Service endpoints.

e To export services from Kubernetes, use internal load balancers or
NodePort services. Internal load balancers are typically easier to use in
public cloud environments where they can be bound to the Kubernetes
Service itself. When such load balancers are unavailable, NodePort
services can expose the service on all of the machines in the cluster.

¢ You can achieve connections between Kubernetes clusters through a
combination of these two approaches, exposing a service externally that
is then consumed as a selector-less service in the other Kubernetes
cluster.

Summary

In the real world, not every application is cloud native. Building applications in
the real world often involves connecting preexisting systems with newer
applications. This chapter described how you can integrate Kubernetes with
legacy applications and also how to integrate different services running across
multiple distinct Kubernetes clusters. Unless you have the luxury of building
something brand new, cloud-native development will always require legacy
integration. The techniques described in this chapter will help you achieve that.

Chapter 14. Running Machine
Learning in Kubernetes

The age of microservices, distributed systems, and the cloud has provided the
perfect environmental conditions for the democratization of machine learning
models and tooling. Infrastructure at scale has now become commoditized, and
the tooling around the machine learning ecosystem is maturing. It just so
happens that Kubernetes is one of the platforms that has become increasingly
popular among data scientists and the wider open source community as the
perfect environment to enable the machine learning workflow and life cycle. In
this chapter, we will cover why Kubernetes is a great place for machine learning
and provide best practices for both cluster administrators and data scientists alike
on how to get the most out of Kubernetes when running machine learning
workloads. Specifically, we focus on deep learning rather than traditional
machine learning because deep learning has fast become the area of innovation
on platforms like Kubernetes.

Why Is Kubernetes Great for Machine Learning?

Kubernetes has quickly become the home for rapid innovation in deep learning.
The confluence of tooling and libraries such as TensorFlow make this
technology more accessible to a large audience of data scientists. What makes
Kubernetes such a great place to run your deep learning workloads? Let’s cover
what Kubernetes provides:

Ubiquitous

Kubernetes is everywhere. All of the major public clouds support it, and
there are distributions for private clouds and infrastructure. Basing
ecosystem tooling on a platform like Kubernetes allows users to run their
deep learning workloads anywhere.

Scalable

Deep learning workflows typically need access to large amounts of
computing power in order to efficiently train machine learning models.
Kubernetes ships with native autoscaling capabilities that make it easy for
data scientists to achieve and fine-tune the level of scale they need to train
their models.

Extensible

Efficiently training a machine learning model typically requires access to
specialized hardware. Kubernetes allows cluster administrators to quickly
and easily expose new types of hardware to the scheduler without having to
change the Kubernetes source code. It also allows custom resources and
controllers to be seamlessly integrated into the Kubernetes API to support
specialized workflows, such as hyperparameter tuning.

Self-service

Data scientists can use Kubernetes to perform self-service machine learning
workflows on demand, without needing specialized knowledge of
Kubernetes itself.

Portable

Machine learning models can be run anywhere, provided that the tooling is
based on the Kubernetes API. This allows machine learning workloads to be
portable across Kubernetes providers.

Machine Learning Workflow

To effectively understand the needs of deep learning, you must understand the
complete workflow. Figure 14-1 represents a simplified machine learning
workflow.

Model
Development
Dataset _
Preparation Serving
Training

Figure 14-1. Machine learning development workflow

Figure 14-1 illustrates that the machine learning development workflow has the
following phases:

Dataset preparation

This phase includes the storage, indexing, cataloging, and metadata
associated with the dataset that is used to train the model. For the purposes of
this book, we consider only the storage aspect. Datasets vary in size, from
hundreds of megabytes to hundreds of terabytes. The dataset needs to be
provided to the model in order for the model to be trained. You must
consider storage that provides the appropriate properties to meet these needs.
Typically, large-scale block and object stores are required and must be
accessible via Kubernetes native storage abstractions or directly accessible
APIs.

Machine learning algorithm development

This is the phase in which data scientists write, share, and collaborate on
machine learning algorithms. Open source tools like JupyterHub are easy to
install on Kubernetes because they typically function like any other
workload.

Training

This is the process by which the model will use the dataset to learn how to
perform the tasks for which it has been designed. The resulting artifact of
training process is usually a checkpoint of the trained model state. The
training process is the piece that takes advantage of all of the capabilities of
Kubernetes at the same time. Scheduling, access to specialized hardware,
dataset volume management, scaling, and networking will all be exercised in
unison in order to complete this task. We cover more of the specifics of the

training phase in the next section.

Serving

This is the process of making the trained model accessible to service requests
from clients so that it can make predictions based on the the data supplied
from the client. For example, if you have an image-recognition model that’s
been trained to detect dogs and cats, a client might submit a picture of a dog,
and the model should be able to determine whether it is a dog, with a certain
level of accuracy.

Machine Learning for Kubernetes Cluster
Admins

In this section, we discuss topics you will need to consider before running
machine learning workloads on your Kubernetes cluster. This section is
specifically targeted toward cluster administrators. The largest challenge you
will face as a cluster administrator responsible for a team of data scientists is
understanding the terminology. There are myriad new terms that you must
become familiar with over time, but rest assured, you can do it. Let’s take a look
at the main problem areas you’ll need to address when preparing a cluster for
machine learning workloads.

Model Training on Kubernetes

Training machine learning models on Kubernetes requires conventional CPUs
and graphics processing units (GPUs). Typically, the more resources you apply,
the faster the training will be completed. In most cases, model training can be
achieved on a single machine that has the required resources. Many cloud
providers offer multi-GPU virtual machine (VM) types, so we recommend
scaling VMs vertically to four to eight GPUs before looking into distributed
training. Data scientists use a technique known as hyperparameter tuning when
training models. Hyperparameter tuning is the process of finding the optimal set
of hyperparameters for model training. A hyperparameter is simply a parameter
that has a set value before the training process begins. The technique involves
running many of the same training jobs with a different set of hyperparameters.

Training your first model on Kubernetes

In this example, you are going to use the MNIST dataset to train an image-
classification model. The MNIST dataset is publicly available and commonly
used for image classification.

To train the model, you are going to need GPUs. Let’s confirm that your
Kubernetes cluster has GPUs available. The following output shows that this
Kubernetes cluster has four GPUs available:

$ kubectl get nodes -o yaml | grep -i nvidia.com/gpu
nvidia.com/gpu: "1"
nvidia.com/gpu: "1
nvidia.com/gpu: "1"
nvidia.com/gpu: "1

nqan

"

To run your training, you are going to using the Job kind in Kubernetes, given
that training is a batch workload. You are going to run your training for 500 steps
and use a single GPU. Create a file called mnist-demo.yaml using the following
manifest, and save it to your filesystem:

apiVersion: batch/v1
kind: Job
metadata:
labels:
app: mnist-demo
name: mnist-demo
spec:
template:
metadata:
labels:
app: mnist-demo
spec:
containers:
- name: mnist-demo
image: lachlanevenson/tf-mnist:gpu
args: ["--max_steps", "500"]
imagePullPolicy: IfNotPresent
resources:
limits:
nvidia.com/gpu: 1
restartPolicy: OnFailure

Now, create this resource on your Kubernetes cluster:

$ kubectl create -f mnist-demo.yaml
job.batch/mnist-demo created

Check the status of the job you just created:

$ kubectl get jobs
NAME COMPLETIONS DURATION AGE
mnist-demo 0/1 4s 4s

If you take a look at the pods, you should see the training job running:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mnist-demo-hv9b2 1/1 Running © 3s

Looking at the pod logs, you can see the training happening;:

$ kubectl logs mnist-demo-hv9ob2

2019-08-06 07:52:21.349999: I tensorflow/core/platform/cpu_feature_guard.cc:137]
Your CPU supports instructions that this TensorFlow binary was not compiled to use:
SSE4.1 SSE4.2 AVX AVX2 FMA

2019-08-06 07:52:21.475416: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030]
Found device 0 with properties:

name: Tesla K80 major: 3 minor: 7 memoryClockRate(GHz): 0.8235

pciBusID: d0c5:00:00.0

totalMemory: 11.92GiB freeMemory: 11.85GiB

2019-08-06 07:52:21.475459: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120]
Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: Tesla K80, pci bus
id: d0c5:00:00.0, compute capability: 3.7)

2019-08-06 07:52:26.134573: I tensorflow/stream_executor/dso_loader.cc:139]
successfully opened CUDA library libcupti.so.8.0 locally

Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.

Extracting /tmp/tensorflow/input_data/train-images-idx3-ubyte.gz

Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.

Extracting /tmp/tensorflow/input_data/train-labels-idx1-ubyte.gz

Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.

Extracting /tmp/tensorflow/input_data/t10k-images-idx3-ubyte.gz

Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.

Extracting /tmp/tensorflow/input_data/t10k-labels-idx1-ubyte.gz

Accuracy at step 0: 0.1255

Accuracy at step 10: 0.6986

Accuracy at step 20: 0.8205

Accuracy at step 30: 0.8619

Accuracy at step 40: 0.8812

Accuracy at step 50: 0.892

Accuracy at step 60: 0.8913

Accuracy at step 70: 0.8988
Accuracy at step 80: 0.9002
Accuracy at step 90: 0.9097
Adding run metadata for 99

Finally, you can see that the training has completed by looking at the job status:

$ kubectl get jobs
NAME COMPLETIONS DURATION AGE
mnist-demo 1/1 27s 112s

To clean up the training job, simply run the following command:

$ kubectl delete -f mnist-demo.yaml
job.batch "mnist-demo" deleted

Congratulations! You just ran your first model training job on Kubernetes.

Distributed Training on Kubernetes

Distributed training is still in its infancy and is difficult to optimize. Running a
training job that requires eight GPUs will almost always be faster to train on a
single eight-GPU machine compared to two machines each with four GPUs. The
only time that you should resort to using distributed training is when the model
doesn’t fit on the biggest machine available. If you are certain that you must run
distributed training, it is important to understand the architecture. Figure 14-2
depicts the distributed TensorFlow architecture, and you can see how the model
and the parameters are distributed.

F Master ﬁ

Parameter Parameter
Server 1 ServerN
Worker Worker Worker Worker
CPU | CPU CPU | GPU GPU | GPU GPU | GPU

Figure 14-2. Distributed TensorFlow architecture

Resource Constraints

Machine learning workloads demand very specific configurations across all
aspects of your cluster. The training phases are most certainly the most resource
intensive. It’s also important to note, as we mentioned a moment ago, that
machine learning algorithm training is almost always a batch-style workload.
Specifically, it will have a start time and a finish time. The finish time of a
training run depends on how quickly you can meet the resource requirements of
the model training. This means that scaling is almost certainly a quicker way to
finish training jobs faster, but scaling has its own set of bottlenecks.

Specialized Hardware

Training and serving a model is almost always more efficient on specialized
hardware. A typical example of such specialized hardware would be commodity
GPUs. Kubernetes allows you to access GPUs via device plug-ins that make the
GPU resource known to the Kubernetes scheduler and therefore able to be
scheduled. There is a device plug-in framework that facilitates this capability,
which means that vendors do not need to modify the core Kubernetes code to
implement their specific device. These device plug-ins typically run as
DaemonSets on each node, which are processes that are responsible for
advertising these specific resources to the Kubernetes API. Let’s take a look at

the NVIDIA device plug-in for Kubernetes, which enables access to NVIDIA
GPUs. After they’re running, you can create a pod as follows, and Kubernetes
will ensure that it is scheduled to a node that has these resource available:

apiVersion: vi
kind: Pod
metadata:
name: gpu-pod
spec:
containers:

- name: digits-container
image: nvidia/digits:6.0
resources:

limits:
nvidia.com/gpu: 2 # requesting 2 GPUs

Device plug-ins are not limited to GPUs; you can use them wherever specialized
hardware is needed—for example, Field Programmable Gate Arrays (FPGAs) or
InfiniBand.

Scheduling idiosyncrasies

It’s important to note that Kubernetes cannot make decisions about resources
that it does not have knowledge about. One of the things you might notice is that
the GPUs are not running at capacity when you are training. You are therefore
not achieving the level of utilization that you would like to see. Let’s consider
the previous example; it exposes only the number of GPU cores and omits the
number of threads that can be run per core. It also doesn’t expose which bus the
GPU core is on, so that jobs that need access to one another or to the same
memory might be colocated on the same Kubernetes nodes. These are all
considerations that might be addressed by device plug-ins in the future but might
leave you wondering why you cannot get 100% utilization on that beefy GPU
you just purchased. It’s also worth mentioning that you cannot request fractions
of GPUs (for example, 0.1), which means that even if the specific GPU supports
running multiple threads concurrently, you will not be able to utilize that
capacity.

Libraries, Drivers, and Kernel Modules

To access specialized hardware, you typically need purpose-built libraries,

https://oreil.ly/RgKuz

drivers, and kernel modules. You will need to ensure that these are mounted into
the container runtime so that they are available to the tooling running in the
container. You might ask, “Why don’t I just add these to the container image
itself?” The answer is simple: the tools need to match the version on the
underlying host and must be configured appropriately for that specific system.
There are container runtimes such as NVIDIA Docker that remove the burden of
having to map host volumes into each container. In lieu of having a purpose-built
container runtime, you might also be able to build an admission webhook that
provides the same functionality. It’s also important to consider that you might
need privileged containers to access some specialized hardware, which also
affects the cluster security profile. The installation of the associated libraries,
drivers, and kernel modules might also be facilitated by Kubernetes device plug-
ins. Many device plug-ins run checks on each machine to confirm that all
installations have been completed before they advertise the schedulable GPU
resources to the Kubernetes scheduler.

Storage

Storage is one of the most critical aspects of the machine learning workflow. You
need to consider storage because it directly affects the following pieces of the
machine learning workflow:

e Dataset storage and distribution among worker nodes during training

e Checkpoints and saving models

Dataset storage and distribution among worker nodes during
training

During training, the dataset must be retrievable by every worker node. The
storage needs are read-only, and, typically, the faster the disk, the better. The
type of disk that’s providing the storage is almost completely dependent on the
size of the dataset. Datasets of hundreds of megabytes or gigabytes might be
perfect for block storage, but datasets that are several or hundreds of terabytes in
size might be better suited to object storage. Depending on the size and location
of the disks that hold the datasets, there might be a performance hit on your
networking.

https://oreil.ly/Re0Ef

Checkpoints and saving models

Checkpoints are created as a model is being trained, and saving models allows
you to use them for serving. In both cases, you need storage attached to each of
the worker nodes to store this data. The data is typically stored under a single
directory, and each worker node is writing to a specific checkpoint or save file.
Most tools expect the checkpoint and save data to be in a single location and
require ReadWriteMany. ReadWriteMany simply means that the volume can be
mounted as read-write by many nodes. When using Kubernetes
PersistentVolumes, you will need to determine the best storage platform for your
needs. The Kubernetes documentation keeps a list of volume plug-ins that
support ReadWriteMany.

Networking

The training phase of the machine learning workflow has a large impact on the
network (specifically, when running distributed training). If we consider
TensorFlow’s distributed architecture, there are two discrete phases to consider
that create a lot of network traffic: variable distribution from each of the
parameter servers to each of the worker nodes, and also the application of
gradients from each worker node back to the parameter server (see Figure 14-2).
The time it takes for this exchange to happen directly affects the time it takes to
train a model. So, it’s a simple game of the faster, the better (within reason, of
course). With most public clouds and servers today supporting 1-Gbps, 10-Gbps,
and sometimes 40-Gbps network interface cards, generally network bandwidth is
only a concern at lower bandwidths. You might also consider InfiniBand if you
need high network bandwidth.

While raw network bandwidth is more often than not a limiting factor, there are
also instances for which getting the data onto the wire from the kernel in the first
place is the problem. There are open source projects that take advantage of
Remote Direct Memory Access (RDMA) to further accelerate network traffic
without the need to modify your worker nodes or application code. RDMA
allows computers in a network to exchange data in main memory without using
the processor, cache, or operating system of either computer. You might consider
the open source project Freeflow, which boasts of having high network
performance for container network overlays.

https://oreil.ly/aMjGd
https://oreil.ly/3RBNS

Specialized Protocols

There are other specialized protocols that you can consider when using machine
learning on Kubernetes. These protocols are often vendor specific, but they all
seek to address distributed training scaling issues by removing areas of the
architecture that quickly become bottlenecks, for example, parameter servers.
These protocols often allow the direct exchange of information between GPUs
on multiple nodes without the need to involve the node CPU and OS. Here are a
couple that you might want to look into to more efficiently scale your distributed
training:

e Message Passing Interface (MPI]) is a standardized portable API for the
transfer of data between distributed processes.

e NVIDIA Collective Communications Library (NCCL) is a library of
topology-aware multi-GPU communication primitives.

Data Scientist Concerns

In the previous discussion, we shared considerations that you need to make in
order to be able to run machine learning workloads on your Kubernetes cluster.
But what about the data scientist? Here we cover some popular tools that make it
easy for data scientists to utilize Kubernetes for machine learning without having
to be a Kubernetes expert.

e Kubeflow is a machine learning toolkit for Kubernetes. It is native to
Kubernetes and ships with several tools necessary to complete the
machine learning workflow. Tools such as Jupyter Notebooks, pipelines,
and Kubernetes-native controllers make it simple and easy for data
scientists to get the most out of Kubernetes as a platform for machine
learning.

e Polyaxon is a tool for managing machine learning workflows that
supports many popular libraries and runs on any Kubernetes cluster.
Polyaxon has both commercial and open source offerings.

e Pachyderm is an enterprise-ready data science platform that has a rich
suite of tools for dataset preparation, life cycle, and versioning along

https://www.kubeflow.org/
https://polyaxon.com/
https://www.pachyderm.io/

with the ability to build machine learning pipelines. Pachyderm has a
commercial offering that you can deploy to any Kubernetes cluster.

Machine Leaning on Kubernetes Best Practices

To achieve optimal performance for your machine learning workloads, consider
the following best practices:

e Smart scheduling and autoscaling. Given that most stages of the
machine learning workflow are batch by nature, we recommend that
you utilize a Cluster Autoscaler. GPU-enabled hardware is costly, and
you certainly do not want to be paying for it when it’s not in use. We
recommend batching jobs to run at specific times using either taints and
tolerations or via a time-specific Cluster Autoscaler. That way, the
cluster can scale to the needs of the machine learning workloads when
needed, and not a moment sooner. Regarding taints and tolerations,
upstream convention is to taint the node with the extended resource as
the key. For example, a node with NVIDIA GPUs should be tainted as
follows: Key: nvidia.com/gpu, Effect: NoSchedule. Using this
method means that you can also utilize the
ExtendedResourceToleration admission controller, which will
automatically add the appropriate tolerations for such taints to pods

requesting extended resources so that the users don’t need to manually
add them.

e The truth is that model training is a delicate balance. Allowing things to
move faster in one area often leads to bottlenecks in others. It’s an
endeavor of constant observation and tuning. As a general rule of
thumb, we recommend that you try to make the GPU become the
bottleneck because it is the most costly resource. Keep your GPUs
saturated. Be prepared to always be on the lookout for bottlenecks, and
set up your monitoring to track the GPU, CPU, network, and storage
utilization.

e Mixed workload clusters. Clusters that are used to run the day-to-day
business services might also be used for the purposes of machine

learning. Given the high performance requirements of machine learning
workloads, we recommend using a separate node pool that’s tainted to
accept only machine learning workloads. This will help protect the rest
of the cluster from any impact from the machine learning workloads
running on the machine learning node pool. Furthermore, you should
consider multiple GPU-enabled node pools, each with different
performance characteristics to suit the workload types. We also
recommend enabling node autoscaling on the machine learning node
pool(s). Use mixed mode clusters only after you have a solid
understanding of the performance impact that your machine learning
workloads have on your cluster.

e Achieving linear scaling with distributed training. This is the holy grail
of distributed model training. Most libraries unfortunately don’t scale in
a linear fashion when distributed. There is lots of work being done to
make scaling better, but it’s important to understand the costs because
this isn’t as simple as throwing more hardware at the problem. In our
experience, it’s almost always the model itself and not the infrastructure
supporting it that is the source of the bottleneck. It is, however,
important to review the utilization of the GPU, CPU, network, and
storage before pointing fingers at the model itself. Open source tools
such as Horovod seek to improve distributed training frameworks and
provide better model scaling.

Summary

We’ve covered a lot of ground in this chapter and have hopefully provided
valuable insight into why Kubernetes is a great platform for machine learning,
especially deep learning, and the considerations you need to be aware of before
deploying your first machine learning workload. If you exercise the
recommendations in this chapter, you will be well equipped to build and
maintain a Kubernetes cluster for these specialized workloads.

https://github.com/horovod/horovod

Chapter 15. Building Higher-Level
Application Patterns on Top of
Kubernetes

Kubernetes is a complex system. Although it simplifies the deployment and
operations of distributed applications, it does little to make the development of
such systems easy. Indeed, in adding new concepts and artifacts for the
developer to interact with, it adds an additional layer of complexity in the service
of simplified operations. Consequently, in many environments, it makes sense to
develop higher-level abstractions in order to provide more developer-friendly
primitives on top of Kubernetes. Additionally, in many large companies, it
makes sense to standardize the way in which applications are configured and
deployed so that everyone adheres to the same operational best practices. This
can also be achieved by developing higher-level abstractions so that developers
automatically adhere to these principles. However, developing these abstractions
can hide important details from the developer and might introduce a walled
garden that limits or complicates the development of certain applications or the
integration of existing solutions. Throughout the development of the cloud, the
tension between the flexibility of infrastructure and the power of the platform
has been a constant. Designing the proper higher-level abstractions enables us to
walk an ideal path through this divide.

Approaches to Developing Higher-Level
Abstractions

When considering how to develop a higher-level primitive on top of Kubernetes,
there are two basic approaches. The first is to wrap up Kubernetes as an
implementation detail. With this approach, developers who consume your
platform should be largely unaware that they are running on top of Kubernetes;
instead, they should think of themselves as consumers of the platform you
supply, and thus Kubernetes is an implementation detail.

The second option is to use the extensibility capabilities built into Kubernetes
itself. The Kubernetes Server API is quite flexible, and you can dynamically add
arbitrary new resources to the Kubernetes API itself. With this approach, your
new higher-level resources coexist alongside the built-in Kubernetes objects, and
the users use the built-in tooling for interacting with all of the Kubernetes
resources, both built-in ones and extensions. This extension model results in an
environment in which Kubernetes is still front and center for your developers but
with additions that reduce complexity and make it easier to use.

Given the two approaches, how do you choose the one that is appropriate? It
really depends on the goals for the abstraction layer that you are building. If you
are constructing a fully isolated, integrated environment in which you have
strong confidence that users will not need to “break glass” and escape, and
where ease of use is an important characteristic, the first option is a great choice.
A good example of such a use case would be building a machine learning
pipeline. The domain is relatively well understood. The data scientists who are
your users are likely not familiar with Kubernetes. Enabling these data scientists
to rapidly get their work done and focus on their domains rather than distributed
systems is the primary goal. Thus, building a complete abstraction on top of
Kubernetes makes the most sense.

On the other hand, when building a higher-level developer abstraction—for
example, an easy way to deploy Java applications—it is a far better choice to
extend Kubernetes rather than wrap it. The reason for this is two-fold. First, the
domain of application development is extraordinarily broad. It will be difficult
for you to anticipate all of the requirements and use cases for your developers,
especially as the applications and business iterate and change over time. The
other reason is to ensure that you can continue to take advantage of the
Kubernetes ecosystem of tools. There are countless cloud-native tools for
monitoring, continuous delivery, and more. Extending rather than replacing the
Kubernetes API ensures that you can continue to use these tools and new ones as
they are developed.

Extending Kubernetes

Because every layer that you might build over Kubernetes is unique, it is beyond

the scope of this book to describe how you might build such a layer. But the
tools and techniques for extending Kubernetes are generic to any construction
you might do on top of Kubernetes, and, thus, we’ll spend time covering them.

Extending Kubernetes Clusters

A complete how-to for extending a Kubernetes cluster is a large topic and more
completely covered in other books like Managing Kubernetes and Kubernetes:
Up and Running (O’Reilly). Rather than going over the same material here, this
section focuses on providing an understanding of how to use Kubernetes
extensibility. Extending the Kubernetes cluster involves understanding the touch
points for resources in Kubernetes. There are three related technical solutions.
The first is the sidecar. Sidecar containers (shown in Figure 15-1) have been
popularized in the context of service meshes. They are containers that run
alongside a main application container to provide additional capabilities that are
decoupled from the main application and often maintained by a separate team.
For example, in service meshes, a sidecar might provide transparent mutual
Transport Layer Security (mTLS) authentication to a containerized application.

Pod

Main App SideCar

Container Container

Figure 15-1. The sidecar design

You can use sidecars to add capabilities to your user-defined applications.

Of course, the entire goal of this effort was to make a developer’s life easier, but
if we require that they learn about and know how to use sidecars, we’ve actually
made the problem worse. Fortunately, there are additional tools for extending
Kubernetes that simplify things. In particular, Kubernetes features admission
controllers. Admission controllers are interceptors that read Kubernetes API
requests prior to them being stored (or “admitted”) into the cluster’s backing

https://oreil.ly/6kUUX
https://oreil.ly/fdRA3

store. You can use these admission controllers to validate or modify API objects.
In the context of sidecars, you can use them to automatically add sidecars to all
pods created in the cluster so that developers do not need to know about the
sidecars in order to reap their benefits. Figure 15-2 illustrates how admission
controllers interact with the Kubernetes API.

—

.—p Admission —| APIServer
A Controllers

Validate and/or Mutate

Figure 15-2. Admission controllers

The utility of admission controllers isn’t limited to adding sidecars. You can also
use them to validate objects submitted by developers to Kubernetes. For
example, you could implement a linter for Kubernetes that ensures developers
submit pods and other resources that follow best practices for using Kubernetes.
A common mistake for developers is to not reserve resources for their
application. For those circumstances, an admission controller-based linter could
intercept such requests and reject them. Of course, you should also leave an
escape hatch (for example, a special annotation) so that advanced users can opt
out of the lint rule, as appropriate. We discuss the importance of escape hatches
later on in the chapter.

So far, we’ve only covered ways to augment existing applications and to ensure
that developers follow best practices—we haven’t really covered how to add
higher-level abstractions. This is where custom resource definitions (CRDs)
come into play. CRDs are a way to dynamically add new resources to an existing
Kubernetes cluster. For example, using CRDs, you could add a new
ReplicatedService resource to a Kubernetes cluster. When a developer creates an
instance of a ReplicatedService, it turns around to Kubernetes and creates
corresponding Deployment and Service resources. Thus, the ReplicatedService
is a convenient developer abstraction for a common pattern. CRDs are generally
implemented by a control loop that is deployed into the cluster itself to manage
these new resource types.

Extending the Kubernetes User Experience

Adding new resources to your cluster is a great way to provide new capabilities,
but to truly take advantage of them, it’s often useful to extend the Kubernetes
user experience (UX) as well. By default, the Kubernetes tooling is unaware of
custom resources and other extensions and thus treats them in a very generic and
not particularly user-friendly manner. Extending the Kuberentes command line
can provide an enhanced user experience.

Generally, the tool used for accessing Kubernetes is the kubectl command-line
tool. Fortunately, it too has been built for extensibility. kubectl plug-ins are
binaries that have a name like kubectl-foo, where foo is the name of the plug-
in. When you invoke kubectl foo ... onthe command line, the invocation is
in turn routed to an invocation of the plug-in binary. Using kubectl plug-ins,
you can define new experiences that deeply understand the new resources that
you have added to your cluster. You are free to implement whatever kind of
experiences are suitable while at the same time taking advantage of the
familiarity of the kubectl tooling. This is especially valuable because it means
that you don’t need to teach developers about a new tool set. Likewise, you can
gradually introduce Kubernetes-native concepts as the developers advance their
Kubernetes knowledge.

Design Considerations When Building Platforms

Countless platforms have been built to enable developer productivity. Given the
opportunity to observe all of the places where these platforms have succeeded
and failed, you can develop a common set of patterns and considerations so as to
learn from the experience of others. Following these design guidelines can help
to ensure that the platform you build is a successful one instead of a “legacy”
dead end from which you must eventually move away.

Support Exporting to a Container Image

When building a platform, many designs provide simplicity by enabling the user
to simply supply code (e.g., a function in Function as a Service [FaaS]) or a
native package (e.g., a JAR file in Java) instead of a complete container image.

This approach has a great deal of appeal because it lets the user stay within the
confines of their well-understood tools and development experience. The
platform handles the containerization of the application for them.

The problem with this approach, however, comes when the developer encounters
the limitations of the programming environment that you have given them.
Perhaps it’s because they need a specific version of a language runtime to work
around a bug. Or it might be that they need to package additional resources or
executables that aren’t part of the way you have structured the automatic
containerazation of the application.

No matter the reason, hitting this wall is an ugly moment for the developer,
because it is a moment when they suddenly must learn a great deal more about
how to package their application, when all they really wanted to do was to
extend it slightly to fix a bug or deliver a new feature.

However, it doesn’t need to be this way. If you support the exporting of your
platform’s programming environment into a generic container, the developer
using your platform doesn’t need to start from scratch and learn everything there
is to know about containers. Instead, they have a complete, working container
image that represents their current application (e.g., the container image
containing their function and the node runtime). Given this starting point, they
can then make the small tweaks necessary to adapt the container image to their
needs. This sort of gradual degradation and incremental learning dramatically
smoothes out the path from higher-level platform down into lower-level
infrastructure and thus increases the general utility of the platform because using
it doesn’t introduce steep cliffs for developers.

Support Existing Mechanisms for Service and Service
Discovery

Another common story of platforms is that they evolve and interconnect with
other systems. Many developers might be very happy and productive in your
platform, but any real-world application will span both the platform that you
build and lower-level Kubernetes applications as well as other platforms.
Connections to legacy databases or open source applications built for Kubernetes
will always become a part of a sufficiently large application.

Because of this need for interconnectivity, it’s critically important that the core
Kubernetes primitives for services and service discovery are used and exposed
by any platform that you construct. Don’t reinvent the wheel in the interest of
improved platform experience, because in doing so you will be creating a walled
garden incapable of interacting with the broader world.

If you expose the applications defined in your platform as Kubernetes Services,
any application anywhere within your cluster will be able to consume your
applications regardless of whether they are running in your higher-level
platform. Likewise, if you use the Kubernetes DNS servers for service discovery,
you will be able to connect from your higher-level application platform to other
applications running in the cluster, even if they are not defined in your higher-
level platform. It might be tempting to build something better or easier to use,
but interconnectivity across different platforms is the common design pattern for
any application of sufficient age and complexity. You will always regret the
decision to build a walled garden.

Building Application Platforms Best Practices

Although Kubernetes provides powerful tools for operating software, it does
considerably less to enable developers to build applications. Thus, it is often
necessary to build platforms on top of Kubernetes to make developers more
productive and/or Kubernetes easier. When building such platforms, you’ll
benefit from keeping the following best practices in mind:

e Use admission controllers to limit and modify API calls to the cluster.
An admission controller can validate (and reject invalid) Kubernetes
resources. A mutating admission controller can automatically modify
API resources to add new sidecars or other changes that users might not
even need to know about.

e Use kubectl plug-ins to extend the Kubernetes user experience by
adding new tools to the familiar existing command-line tool. In rare
occasions, a purpose-built tool might be more appropriate.

e When building platforms on top of Kubernetes, think carefully about
the users of the platform and how their needs will evolve. Making

things simple and easy to use is clearly a good goal, but if this also leads
to users that are trapped and unable to be successful without rewriting
everything outside of your platform, it will ultimately be a frustrating
(and unsuccessful) experience.

Summary

Kubernetes is a fantastic tool for simplifying the deployment and operation of
software, but unfortunately, it is not always the most developer-friendly or
productive environment. Because of this, a common task is to build a higher-
level platform on top of Kubernetes in order to make it more approachable and
usable by the average developer. This chapter described several approaches for
designing such a higher-level system and provided a summary of the core
extensibility infrastructure that is available in Kubernetes. It concluded with
lessons and design principles drawn from our observation of other platforms that
have been built on top of Kubernetes, with the hope that they can guide the
design of your platform.

Chapter 16. Managing State and
Stateful Applications

In the early days of container orchestration, the targeted workloads were usually
stateless applications that used external systems to store state if necessary. The
thought was that containers are very temporal, and orchestration of the backing
storage needed to keep state in a consistent manner was difficult at best. Over
time the need for container-based workloads that kept state became a reality and,
in select cases, might be more performant. Kubernetes adapted over many
iterations to not only allow for storage volumes mounted into the pod, but those
volumes being managed by Kubernetes directly was an important component in
orchestration of storage with the workloads that require it.

If the ability to mount an external volume to the container was enough, many
more examples of stateful applications running at scale in Kubernetes would
exist. The reality is that volume mounting is the easy component in the grand
scheme of stateful applications. The majority of applications that require state to
be maintained after node failure are complicated data-state engines such as
relational database systems, distributed key/value stores, and complicated
document management systems. This class of applications requires more
coordination between how members of the clustered application communicate
with one another, how the members are identified, and the order in which
members either appear or disappear into the system.

This chapter focuses on best practices for managing state, from simple patterns
such as saving a file to a network share, to complex data management systems
like MongoDB, mySQL, or Kafka. There is a small section on a new pattern for
complex systems called Operators that brings not only Kubernetes primitives,
but allows for business or application logic to be added as custom controllers
that can help make operating complex data management systems easier.

Volumes and Volume Mounts

Not every workload that requires a way to maintain state needs to be a complex
database or high throughput data queue service. Often, applications that are
being moved to containerized workloads expect certain directories to exist and
read and write pertinent information to those directories. The ability to inject
data into a volume that can be read by containers in a pod is covered in

Chapter 5; however, data mounted from ConfigMaps or secrets is usually read-
only, and this section focuses on giving containers volumes that can be written to
and will survive a container failure or, even better, a pod failure.

Every major container runtime, such as Docker, rkt, CRI-O, and even
Singularity, allows for mounting volumes into a container that is mapped to an
external storage system. At its simplest, external storage can be a memory
location, a path on the container’s host, or an external filesystem such as NFS,
Glusterfs, CIFS, or Ceph. Why would this be needed, you might wonder? A
useful example is that of a legacy application that was written to log application-
specific information to a local filesystem. There are many possible solutions
including, but not limited to, updating the application code to log out to a
stdout or stderr sidecar container that can stream log data to an outside source
via a shared pod volume or using a host-based logging tool that can read a
volume for both host logs and container application logs. The last scenario can
be attained by using a volume mount in the container using a Kubernetes

hostPath mount, as shown in the following:

apiVersion: apps/vi
kind: Deployment
metadata:
name: nginx-webserver
spec:
replicas: 3
selector:
matchlLabels:
app: nginx-webserver
template:
metadata:
labels:
app: nginx-webserver
spec:
containers:
- name: nginx-webserver
image: nginx:alpine
ports:

- containerPort: 80
volumeMounts:
- name: hostvol
mountPath: /usr/share/nginx/html
volumes:
- name: hostvol
hostPath:
path: /home/webcontent

Volume Best Practices

e Try to limit the use of volumes to pods requiring multiple containers
that need to share data, for example adapter or ambassador type
patterns. Use the emptyDir for those types of sharing patterns.

e Use hostDir when access to the data is required by node-based agents
or services.

¢ Try to identify any services that write their critical application logs and
events to local disk, and if possible change those to stdout or stderr
and let a true Kubernetes-aware log aggregation system stream the logs
instead of leveraging the volume map.

Kubernetes Storage

The examples so far show basic volume mapping into a container in a pod,
which is just a basic container engine capability. The real key is allowing
Kubernetes to manage the storage backing the volume mounts. This allows for
more dynamic scenarios where pods can live and die as needed, and the storage
backing the pod will transition accordingly to wherever the pod may live.
Kubernetes manages storage for pods using two distinct APIs, the
PersistentVolume and PersistentVolumeClaim.

PersistentVolume

It is best to think of a PersistentVolume as a disk that will back any volumes that
are mounted to a pod. A PersistentVolume will have a claim policy that will
define the scope of life of the volume independent of the life cycle of the pod
that uses the volume. Kubernetes can use either dynamic or statically defined

volumes. To allow for dynamically created volumes, there must be a
StorageClass defined in Kubernetes. PersistentVolumes can be created in the
cluster of varying types and classes, and only when a PersistentVolumeClaim
matches the PersistentVolume will it actually be assigned to a pod. The volume
itself is backed by a volume plug-in. There are numerous plug-ins supported
directly in Kubernetes, and each has different configuration parameters to adjust:

apiVersion: vi
kind: PersistentVolume
metadata:
name: pv001
labels:

tier: "silver"
spec:
capacity:

storage: 5Gi
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Recycle
storageClassName: nfs
mountOptions:

- hard

- nfsvers=4.1
nfs:

path: /tmp

server: 172.17.0.2

PersistentVolumeClaims

PersistentVolumeClaims are a way to give Kubernetes a resource requirement
definition for storage that a pod will use. Pods will reference the claim, and then

if a persistentVolume that matches the claim request exists, it will allocate that
volume to that specific pod. At minimum, a storage request size and access
mode must be defined, but a specific StorageClass can also be defined. Selectors
can also be used to match certain PersistentVolumes that meet a certain criteria
will be allocated:

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: my-pvc
spec:
storageClass: nfs

accessModes:
- ReadWriteMany
resources:
requests:
storage: 5Gi
selector:
matchLabels:
tier: "silver"

The preceding claim will match the PersistentVolume created earlier because the
storage class name, the selector match, the size, and the access mode are all
equal.

Kubernetes will match up the PersistentVolume with the claim and bind them
together. Now to use the volume, the pod. spec should just reference the claim
by name, as follows:

apiVersion: apps/vi
kind: Deployment
metadata:

name: nginx-webserver
spec:

replicas: 3

selector:

matchlLabels:
app: nginx-webserver
template:
metadata:

labels:
app: nginx-webserver

spec:

containers:

- name: nginx-webserver
image: nginx:alpine
ports:

- containerPort: 80
volumeMounts:
- name: hostvol
mountPath: /usr/share/nginx/html
volumes:
- name: hostvol
persistentVolumeClaim:
claimName: my-pvc

Storage Classes

Instead of manually defining the PersistentVolumes ahead of time,
administrators might elect to create StorageClass objects, which define the
volume plug-in to use and any specific mount options and parameters that all
PersistentVolumes of that class will use. This then allows the claim to be defined
with the specific StorageClass to use, and Kubernetes will dynamically create
the PersistentVolume based on the StorageClass parameters and options:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: nfs
provisioner: cluster.local/nfs-client-provisioner
parameters:
archiveOnDelete: True

Kubernetes also allows operators to create a default storage class using the
DefaultStorageClass admission plug-in. If this has been enabled on the API
server, then a default StorageClass can be defined and any
PersistentVolumeClaims that do not explicitly define a StorageClass. Some
cloud providers will include a default storage class to map to the cheapest
storage allowed by their instances.

Container Storage Interface and FlexVolume

Often referred to as “Out-of-Tree” volume plug-ins, the Container Storage
Interface (CSI) and FlexVolume enable storage vendors to create custom storage
plug-ins without the need to wait for direct code additions to the Kubernetes
code base like most volume plug-ins today.

The CSI and FlexVolume plug-ins are deployed on Kubernetes clusters as
extensions by operators and can be updated by the storage vendors when needed
to expose new functionality.

The CSI states its objective on GitHub as:

To define an industry standard Container Storage Interface that will enable
storage vendors (SP) to develop a plug-in once and have it work across a
number of container orchestration (CO) systems.

The FlexVolume interface has been the traditional method used to add additional
features for a storage provider. It does require specific drivers to be installed on

https://oreil.ly/AuMgE

all of the nodes of the cluster that will use it. This basically becomes an
executable that is installed on the hosts of the cluster. This last component is the
main detractor to using FlexVolumes, especially in managed service providers,
because access to the nodes is frowned upon and the masters practically
impossible. The CSI plug-in solves this by basically exposing the same
functionality and being as easy to use as deploying a pod into the cluster.

Kubernetes Storage Best Practices

Cloud native application design principles try to enforce stateless application
design as much as possible; however, the growing footprint of container-based
services has created the need for data storage persistence. These best practices
around storage in Kubernetes in general will help to design an effective approach
to providing the required storage implementations to the application design:

e If possible, enable the DefaultStorageClass admission plug-in and
define a default storage class. Many times, Helm charts for applications
that require PersistentVolumes default to a default storage class for the
chart, which allows the application to be installed without too much
modification.

e When designing the architecture of the cluster, either on-premises or in
a cloud provider, take into consideration zone and connectivity between
the compute and data layers using the proper labels for both nodes and
PersistentVolumes, and using affinity to keep the data and workload as
close as possible. The last thing you want is a pod on a node in zone A
trying to mount a volume that is attached to a node in zone B.

e Consider very carefully which workloads require state to be maintained
on disk. Can that be handled by an outside service like a database
system or, if running in a cloud provider, by a hosted service that is API
consistent with currently used APIs, say a mongoDB or mySQL as a
service?

¢ Determine how much effort would be involved in modifying the
application code to be more stateless.

e While Kubernetes will track and mount the volumes as workloads are

scheduled, it does not yet handle redundancy and backup of the data
that is stored in those volumes. The CSI specification has added an API
for vendors to plug in native snapshot technologies if the storage
backend can support it.

Verify the proper life cycle of the data that volumes will hold. By
default the reclaim policy is set to for dynamically provisioned
persistentVolumes which will delete the volume from the backing
storage provider when the pod is deleted. Sensitive data or data that can
be used for forensic analysis should be set to reclaim.

Stateful Applications

Contrary to popular belief, Kubernetes has supported stateful applications since
its infancy, from mySQL, Kafka, and Cassandra to other technologies. Those
pioneering days, however, were fraught with complexities and were usually only
for small workloads with lots of work required to get things like scaling and
durability to work.

To fully grasp the critical differences, you must understand how a typical
ReplicaSet schedules and manages pods, and how each could be detrimental to
traditional stateful applications:

Pods in a ReplicaSet are scaled out and assigned random names when
scheduled.

Pods in a ReplicaSet are scaled down in an arbitrary manner.

Pods in a ReplicaSet are never called directly through their name or IP
address but through their association with a Service.

Pods in a ReplicaSet can be restarted and moved to another node at any
time.

Pods in a ReplicaSet that have a PersistentVolume mapped are linked
only by the claim, but any new pod with a new name can take over the
claim if needed when rescheduled.

Those that have only cursory knowledge of cluster data management systems

can immediately begin to see issues with these characteristics of ReplicaSet-
based pods. Imagine a pod that has the current writable copy of the database just
all of a sudden getting deleted! Pure pandemonium would ensue for sure.

Most neophytes to the Kubernetes world assume that StatefulSet applications are
automatically database applications and therefore equate the two things. This
could not be further from the truth in the sense that Kubernetes has no sense of
what type of application it is deploying. It does not know that your database
system requires leader election processes, that it can or cannot handle data
replication between members of the set, or, for that matter, that it is a database
system at all. This is where StatefulSets come in to play.

StatefulSets

What StatefulSets do is make it easier to run applications systems that expect
more reliable node/pod behavior. If we look at the list of typical pod
characteristics in a ReplicaSet, StatefulSets offer almost the complete opposite.
The original spec back in Kubernetes version 1.3 called PetSets was introduced
to answer some of the critical scheduling and management needs for stateful-
type applications such as complex data management systems:

e Pods in a StatefulSet are scaled out and assigned sequential names. As
the set scales up, the pods get ordinal names, and by default a new pod
must be fully online (pass its liveness and/or readiness probes) before
the next pod is added.

e Pods in a StatefulSet are scaled down in reverse sequence.

e Pods in a StatefulSet can be addressed individually by name behind a
headless Service.

e Pods in a StatefulSet that require a volume mount must use a defined
PersistentVolume template. Volumes claimed by pods in a StatefulSet
are not deleted when the StatefulSet is deleted.

A StatefulSet specification looks very similar to a Deployment except for the
Service declaration and the PersistentVolume template. The headless Service
should be created first, which defines the Service that the pods will be addressed
with individually. The headless Service is the same as a regular Service but does

not do the normal load balancing:

apiVersion: vi
kind: Service

metadata:
name: mongo
labels:
name: mongo
spec:
ports:
- port: 27017

targetPort: 27017
clusterIP: None #This creates the headless Service
selector:

role: mongo

The StatefulSet definition will also look exactly like a Deployment with a few
changes:

apiVersion: apps/vibetal
kind: StatefulSet
metadata:
name: mongo
spec:
serviceName: "mongo"
replicas: 3
template:
metadata:
labels:
role: mongo
environment: test
spec:
terminationGracePeriodSeconds: 10
containers:
- name: mongo
image: mongo:3.4
command:
- mongod
- "--replSet"
- rso
- "--bind_1ip"
- 0.0.0.0
- "--smallfiles"
- "--noprealloc"
ports:
- containerPort: 27017
volumeMounts:

- name: mongo-persistent-storage
mountPath: /data/db
- name: mongo-sidecar
image: cvallance/mongo-k8s-sidecar
env:
- name: MONGO_SIDECAR_POD_LABELS
value: "role=mongo,environment=test"
volumeClaimTemplates:
- metadata:
name: mongo-persistent-storage
annotations:
volume.beta.kubernetes.io/storage-class: "fast"
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 2Gi

Operators

StatefulSets has definitely been a major factor in introducing complex stateful
data systems as feasible workloads in Kubernetes. The only real issue is, as
stated earlier, Kubernetes does not really understand the workload that is running
in the StatefulSet. All of the other complex operations, like backups, failover,
leader registration, new replica registration, and upgrades, are all operations that
need to happen quite regularly and will require some careful consideration when
running as StatefulSets.

Early on in the growth of Kubernetes, CoreOS site reliability engineers (SREs)
created a new class of cloud native software for Kubernetes called Operators.
The original intent was to encapsulate the application domain-specific
knowledge of running a specific application into a specific controller that
extends Kubernetes. Imagine building up on the StatefulSet controller to be able
to deploy, scale, upgrade, backup, and run general maintenance operations on
Cassandra or Kafka. Some of the first Operators that were created were for etcd
and Prometheus, which uses a time series database to keep metrics over time.
The proper creation, backup, and restore configuration of Prometheus or etcd
instances can be handled by an Operator and are basically new Kubernetes-
managed objects just like a pod or Deployment.

Until recently, Operators have been one-off tools created by SREs or by software
vendors for their specific application. In mid-2018, RedHat created the Operator

Framework, which is a set of tools including an SDK life cycle manager and
future modules that will enable features such as metering, marketplace, and
registry type functions. Operators are not only for stateful applications, but
because of their custom controller logic they are definitely more amenable to
complex data services and stateful systems.

Operators are still an emerging technology in the Kubernetes space, but they are
slowly taking a foothold with many data management system vendors, cloud
providers, and SREs the world over who want to include some of the operational
knowledge they have in running complex distributed systems in Kubernetes.
Take a look at OperatorHub for an updated list of curated Operators.

StatefulSet and Operator Best Practices

Large distributed applications that require state and possibly complicated
management and configuration operations benefit from Kubernetes StatefulSets
and Operators. Operators are still evolving, but they have the backing of the
community at large, so these best practices are based on current capabilities at
the time of publication:

e The decision to use Statefulsets should be taken judiciously because
usually stateful applications require much deeper management that the
orchestrator cannot really manage well yet (read the “Operators” section
for the possible future answer to this deficiency in Kubernetes).

e The headless Service for the StatefulSet is not automatically created and
must be created at deployment time to properly address the pods as
individual nodes.

¢ When an application requires ordinal naming and dependable scaling, it
does not always mean it requires the assignment of PersistentVolumes.

¢ If a node in the cluster becomes unresponsive, any pods that are part of
a StatefulSet are not not automatically deleted; they instead will enter a
Terminating or Unkown state after a grace period. The only way to
clear this pod is to remove the node object from the cluster, the kubelet
beginning to work again and deleting the pod directly, or an Operator
force deleting the pod. The force delete should be the last option and

http://operatorhub.io

great care should be taken that the node that had the deleted pod does
not come back online, because there will now be two pods with the
same name in the cluster. You can use kubectl delete pod nginx-0
--grace-period=0 --force to force delete the pod.

e Even after force deleting a pod, it might stay in an Unknown state, so a
patch to the API server will delete the entry and cause the StatefulSet
controller to create a new instance of the deleted pod: kubectl patch
pod nginx-0 -p '{"metadata":{"finalizers":null}}".

e If you’re running a complex data system with some type of leader
election or data replication confirmation processes, use preStop hook
to properly close any connections, force leader election, or verify data
synchronization before the pod is deleted using a graceful shutdown
process.

e When the application that requires stateful data is a complex data
management system, it might be worth a look to determine whether an
Operator exists to help manage the more complicated life cycle
components of the application. If the application is built in-house, it
might be worth investigating whether it would be useful to package the
application as an Operator to add additional manageability to the
application. Look at the CoreOS Operator SDK for an example.

Summary

Most organizations look to containerize their stateless applications and leave the
stateful applications as is. As more and more cloud native applications run in
cloud provider Kubernetes offerings, data gravity becomes an issue. Stateful
applications require much more due diligence, but the reality of running them in
clusters has been accelerated by the introduction of StatefulSets and Operators.
Mapping volumes into containers allow Operators to abstract the storage
subsystem specifics away from any application development. Managing stateful
applications such as database systems in Kubernetes is still a complex
distributed system and needs to be carefully orchestrated using the native
Kubernetes primitives of pods, ReplicaSets, Deployments, and StatefulSets, but

https://coreos.com/operators

using Operators that have specific application knowledge built into them as
Kubernetes-native APIs may help to elevate these systems into production-based
clusters.

Chapter 17. Admission Control
and Authorization

Controlling access to the Kubernetes API is key to ensuring that your cluster is
not only secured but also can be used as a means to impart policy and
governance for all users, workloads, and components of your Kubernetes cluster.
In this chapter, we share how you can use admission controllers and
authorization modules to enable specific features and how you can customize
them to suit your specific needs.

Figure 17-1 provides insight on how and where admission control and
authorization take place. It depicts the end-to-end request flow through the
Kubernetes API server until the object, if accepted, is saved to storage.

API Server

APIRequest | f Authentication| | Mutating Schema Validating
P Authorization Admission [Validation [Admission et

A A

Admission | | Admission Admission | | Admission

review | | response review | | response
A\ 4

‘ ‘ Webhook Webhook

Figure 17-1. An API request flow

Admission Control

Have you ever wondered how namespaces are automatically created when you
define a resource in a namespace that doesn’t already exist? Maybe you’ve
wondered how a default storage class is selected? These changes are powered by
a little-known feature called admission controllers. In this section, we take a
look at how you can use admission controllers to implement Kubernetes best
practices on the server side on behalf of the user and how we can utilize

admission control to govern how a Kubernetes cluster is used.

What Are They?

Admission controllers sit in the path of the Kubernetes API server request flow
and receive requests following the authentication and authorization phases. They
are used to either validate or mutate (or both) the request object before saving it
to storage. The difference between validating and mutating admission controllers
is that mutating can modify the request object they admit, whereas validating
cannot.

Why Are They Important?

Given that admission controllers sit in the path of all API server requests, you
can use them in a variety of different ways. Most commonly, admission
controller usage can be grouped into the following three groups:

Policy and governance

Admission controllers allow policy to be enforced in order to meet business
requirements; for example:

¢ Only internal cloud load balancers can be used when in the dev
namespace.

e All containers in a pod must have resource limits.

e Add predefined standard labels or annotations to all resources in order
to make them discoverable to existing tools.

e All Ingress resources only use HTTPS. For more details on how to use
admission webhooks in this context, see Chapter 11.

Security

You can use admission controllers to enforce a consistent security posture
across your cluster. A canonical example is the PodSecurityPolicy admission
controller, which enables controls on security-sensitive fields of the pod
specification, for example, denying privileged containers or usage of specific
paths from the host filesystem. You can enforce more granular or custom

security rules using admission webhooks.

Resource management

Admission controllers allow you to validate in order to provide best practices
for your cluster users, for example:

¢ Ensure all ingress fully qualified domain names (FQDN) fall within a
specific suffix.

e Ensure ingress FQDNs don’t overlap.

e All containers in a pod must have resource limits.

Admission Controller Types

There are two classes of admission controllers: standard and dynamic. Standard
admission controllers are compiled into the API server and are shipped as plug-
ins with each Kubernetes release; they need to be configured when the API
server is started. Dynamic controllers, on the other hand, are configurable at
runtime and are developed outside the core Kubernetes codebase. The only type
of dynamic admission control is admission webhooks, which receive admission
requests via HTTP callbacks.

Kubernetes ships with more than 30 admission controllers, which are enabled via
the following flag on the Kubernetes API server:

--enable-admission-plugins

Many of the features that ship with Kubernetes depend on the enablement of
specific standard admission controllers and, as such, there is a recommended set
of defaults:

--enable-admission-
plugins=NamespacelLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTol
erationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,Priority,Resource
Quota,PodSecurityPolicy

You can find the list of Kubernetes admission controllers and their functionality
in the Kubernetes documentation.

You might have noticed the following from the list of recommended admission
controllers to enable:

“Mutating AdmissionWebhook, Validating AdmissionWebhook.” These standard
admission controllers don’t implement any admission logic themselves; rather,
they are used to configure a webhook endpoint running in-cluster to forward the
admission request object.

Configuring Admission Webhooks

As previously mentioned, one of the main advantages of admission webhooks is
that they are dynamically configurable. It is important that you understand how
to effectively configure admission webhooks because there are implications and
trade-offs when it comes to consistency and failure modes.

The snippet that follows is a ValidatingWebhookConfiguration resource
manifest. This manifest is used to define a validating admission webhook. The
snippet provides detailed descriptions on the function of each field:

apiVersion: admissionregistration.k8s.10/vibetal
kind: ValidatingWebhookConfiguration
metadata:
name: ## Resource name
webhooks:
- name: ## Admission webhook name, which will be shown to the user when any
admission reviews are denied
clientConfig:
service:
namespace: ## The namespace where the admission webhook pod resides
name: ## The service name that is used to connect to the admission
webhook
path: ## The webhook URL
caBundle: ## The PEM encoded CA bundle which will be used to validate the
webhook's server certificate
rules: ## Describes what operations on what resources/subresources the API
server must send to this webhook
- operations:
- ## The specific operation that triggers the API server to send to this
webhook (e.g., create, update, delete, connect)
apiGroups:
apiVersions:
. M
resources:
- ## Specific resources by name (e.g., deployments, services, ingresses)

failurePolicy: ## Defines how to handle access issues or unrecognized errors,
and must be Ignore or Fail

For completeness, let’s take a look at a MutatingWebhookConfiguration resource
manifest. This manifest defines a mutating admission webhook. The snippet
provides detailed descriptions on the function of each field:

apiVersion: admissionregistration.k8s.i0/vibetal
kind: MutatingWebhookConfiguration
metadata:
name: ## Resource name
webhooks:
- name: ## Admission webhook name, which will be shown to the user when any
admission reviews are denied
clientConfig:
service:
namespace: ## The namespace where the admission webhook pod resides
name: ## The service name that is used to connect to the admission webhook
path: ## The webhook URL
caBundle: ## The PEM encoded CA bundle which will be used to validate the
webhook's server certificate
rules: ## Describes what operations on what resources/subresources the API
server must send to this webhook
- operations:
- ## The specific operation that triggers the API server to send to this
webhook (e.g., create, update, delete, connect)
apiGroups:
apiVersions:
. M
resources:
- ## Specific resources by name (e.g., deployments, services, ingresses)
failurePolicy: ## Defines how to handle access issues or unrecognized errors,
and must be Ignore or Fail

You might have noticed that both resources are identical, with the exception of
the kind field. There is one difference on the backend, however:
MutatingWebhookConfiguration allows the admission webhook to return a
modified request object, whereas ValidatingWebhookConfiguration does not.
Even still, it is acceptable to define a MutatingWebhookConfiguration and
simply validate; there are security considerations that come into play, and you
should consider following the least-privilege rule.

NOTE

It is also likely that you thought to yourself, “What happens if I define a
ValidatingWebhookConfiguration or MutatingWebhookConfiguration with the resource field
under the rule object to be either ValidatingWebhookConfiguration or
MutatingWebhookConfiguration?” The good news is that ValidatingAdmissionWebhooks and
Mutating AdmissionWebhooks are never called on admission requests for
ValidatingWebhookConfiguration and MutatingWebhookConfiguration objects. This is for
good reason: you don’t want to accidentally put the cluster in an unrecoverable state.

Admission Control Best Practices

Now that we’ve covered the power of admission controllers, here are our best
practices to help you make the most of using them:

e Admission plug-in ordering doesn’t matter. In earlier versions of
Kubernetes, the ordering of the admission plug-ins was specific to the
processing order; hence it mattered. In current supported Kubernetes
versions, the ordering of the admission plug-ins as specified as API
server flags via - -enable-admission-plugins no longer matters.
Ordering does, however, play a small role when it comes to admission
webhooks, so it’s important to understand the request flow in this case.
Request admittance or rejection operates as a logical AND, meaning if
any of the admission webhooks reject a request, the entire request is
rejected and an error is sent back to the user. It’s also important to note
that mutating admission controllers are always run prior to running
validating admission controllers. If you think about it, this makes good
sense: you probably don’t want to validate objects that you are going to
subsequently modify. Figure 17-2 illustrates a request flow via
admission webhooks.

AP| Server
APIRequest | | Authentication Mutating Schema Validating
2 Authorization Admission Validation Admission —»| et
F ¥ F
Admission | | Admission Admission | | Admission
review | | response IeVIew | | response
A\ 4

‘ ‘ Webhook Webhook

Figure 17-2. An API request flow via admission webhooks

e Don’t mutate the same fields. Configuring multiple mutating admission
webhooks also presents challenges. There is no way to order the request
flow through multiple mutating admission webhooks, so it’s important
to not have mutating admission controllers modify the same fields,
because this can result in unexpected results. In the case where you
have multiple mutating admission webhooks, we generally recommend
configuring validating admission webhooks to confirm that the final
resource manifest is what you expect post-mutation because it’s
guaranteed to be run following mutating webhooks.

e Fail open/fail closed. You might recall seeing the failurePolicy field
as part of both the mutating and validating webhook configuration
resources. This field defines how the API server should proceed in the
case where the admission webhooks have access issues or encounter
unrecognized errors. You can set this field to either Ignore or Fail.
Ignore essentially fails to open, meaning that processing of the request
will continue, whereas Fail denies the entire request. This might seem
obvious, but the implications in both cases require consideration.
Ignoring a critical admission webhook could result in policy that the
business relies on not being applied to a resource without the user
knowing.

One potential solution to protect against this would be to raise an alert
when the API server logs that it cannot reach a given admission
webhook. Fail can be even more devastating by denying all requests if
the admission webhook is experiencing issues. To protect against this

you can scope the rules to ensure that only specific resource requests are
set to the admission webhook. As a tenet, you should never have any
rules that apply to all resources in the cluster.

If you have written your own admission webhook, it’s important to
remember that user/system requests can be directly affected by the time
it takes for your admission webhook to make a decision and respond.
All admission webhook calls are configured with a 30-second timeout,
after which time the failurePolicy takes effect. Even if it takes
several seconds for your admission webhook to make an admit/deny
decision, it can severely affect user experience when working with the
cluster. Avoid having complex logic or relying on external systems such
as databases in order to process the admit/deny logic.

Scoping admission webhooks. There is an optional field that allows you
to scope the namespaces in which the admission webhooks operate on
via the NamespaceSelector field. This field defaults to empty, which
matches everything, but can be used to match namespace labels via the
use of the matchLabels field. We recommend that you always use this
field because it allows for an explicit opt-in per namespace.

The kube-system namespace is a reserved namespace that’s common
across all Kubernetes clusters. It’s where all system-level services
operate. We recommend never running admission webhooks against the
resources in this namespace specifically, and you can achieve this by
using the NamespaceSelector field and simply not matching the kube-
system namespace. You should also consider it on any system-level
namespaces that are required for cluster operation.

Lock down admission webhook configurations with RBAC. Now that
you know about all the fields in the admission webhook configuration,
you have probably thought of a really simple way to break access to a
cluster. It goes without saying that the creation of both a
MutatingWebhookConfiguration and ValidatingWebhookConfiguration
is a root-level operation on the cluster and must be locked down
appropriately using RBAC. Failure to do so can result in a broken
cluster or, even worse, an injection attack on your application

workloads.

e Don’t send sensitive data. Admission webhooks are essentially black
boxes that accept AdmissionRequests and output AdmissionResponses.
How they store and manipulate the request is opaque to the user. It’s
important to think about what request payloads you are sending to the
admission webhook. In the case of Kubernetes secrets or ConfigMaps,
they might contain sensitive information and require strong guarantees
about how that information is stored and shared. Sharing these
resources with an admission webhook can leak sensitive information,
which is why you should scope your resource rules to the minimum
resource needed to validate and/or mutate.

Authorization

We often think about authorization in the context of answering the following
question: “Is this user able to perform these actions on these resources?” In
Kubernetes, the authorization of each request is performed after authentication
but before admission. In this section, we explore how you can configure
different authorization modules and better understand how you can create the
appropriate policy to serve the needs of your cluster. Figure 17-3 illustrates
where authorization sits in the request flow.

API Server

API Request _,lAuthenticationl y| Mutating | | Schema | | Validating o et

Authorization Admission Validation Admission
7 Y y §

Admission | | Admission Admission | | Admission

review | | response review | | response
A\ 4

‘ ‘ Webhook Webhook

Figure 17-3. API request flow via authorization modules

Authorization Modules

Authorization modules are responsible for either granting or denying permission
to access. They determine whether to grant access based on policy that must be
explicitly defined; otherwise all requests will be implicitly denied.

As of version 1.15, Kubernetes ships with the following authorization modules
out of the box:

Attribute-Based Access Control (ABAC)

Allows authorization policy to be configured via local files

RBAC

Allows authorization policy to be configured via the Kubernetes API (refer
to Chapter 4)

Webhook

Allows the authorization of a request to be handled via a remote REST
endpoint

Node
Specialized authorization module that authorizes requests from kubelets

The modules are configured by the cluster administrator via the following flag
on the API server: - -authorization-mode. Multiple modules can be
configured and are checked in order. Unlike admission controllers, if a single
authorization module admits the request, the request can proceed. Only for the
case in which all modules deny the request will an error be returned to the user.

ABAC

Let’s take a look at a policy definition in the context of using the ABAC
authorization module. The following grants user Mary read-only access to a pod
in the kube - system namespace:

apiVersion: abac.authorization.kubernetes.io/vibetal
kind: Policy
spec:

user: mary

resource: pods

readonly: true

namespace: kube-system

If Mary were to make the following request, it would be denied because Mary
doesn’t have access to get pods in the demo-app namespace:

apiVersion: authorization.k8s.io/vibetal
kind: SubjectAccessReview
spec:
resourceAttributes:
verb: get
resource: pods
namespace: demo-app

This example introduced a new API group, authorization.k8s.10. This set of
APIs exposes API server authorization to external services and has the following
APIs, which are great for debugging:

SelfSubjectAccessReview

Access review for the current user

SubjectAccessReview

Like SelfSubjectAccessReview but for any user

LocalSubjectAccessReview

Like SubjectAccessReview but namespace specific

SelfSubjectRulesReview
Returns a list of actions a user can perform in a given namespace

The really cool part is that you can query these APIs by creating resources as
you typically would. Let’s actually take the previous example and test this for
ourselves using the SelfSubjectAccessReview. The status field in the output
indicates that this request is allowed:

$ cat << EOF | kubectl create -f - -o yaml
apiVersion: authorization.k8s.io/vlbetal
kind: SelfSubjectAccessReview
spec:
resourceAttributes:

verb: get

resource: pods

namespace: demo-app
EOF

apiVersion: authorization.k8s.io/vibetal
kind: SelfSubjectAccessReview
metadata:
creationTimestamp: null
spec:
resourceAttributes:
namespace: demo-app
resource: pods
verb: get
status:
allowed: true

In fact, Kubernetes ships with tooling built into kubectl to make this even
easier. The kubectl auth can-i command operates by querying the same API
as the previous example:

$ kubectl auth can-i get pods --namespace demo-app
yes

With administrator credentials, you can also run the same command to check
actions as another user:

$ kubectl auth can-i get pods --namespace demo-app --as mary
yes

RBAC

Kubernetes role-based access control is covered in depth in Chapter 4.

Webhook

Using the webhook authorization module allows a cluster administrator to
configure an external REST endpoint to delegate the authorization process to.
This would run off cluster and be reachable via URL. The configuration of the
REST endpoint is found in a file on the master filesystem and configured on the
API server via - -authorization-webhook-config-file=SOME_FILENAME.
After you’ve configured it, the API server will send SubjectAccessReview
objects as part of the request body to the authorization webhook application,
which processes and returns the object with the status field complete.

Authorization Best Practices

Consider the following best practices before making changes to the authorization
modules configured on your cluster:

e Given that the ABAC policies need to be placed on the filesystem of
each master node and kept synchronized, we generally recommend
against using ABAC in multimaster clusters. The same can be said for
the webhook module because the configuration is based on a file and a
corresponding flag being present. Furthermore, changes to these
policies in the files require a restart of the API server to take effect,
which is effectively a control-plane outage in a single master cluster or
inconsistent configuration in a multimaster cluster. Given these details,
we recommend using only the RBAC module for user authorization
because the rules are configured and stored in Kubernetes itself.

e Webhook modules, although powerful, are potentially very dangerous.
Given that every request is subject to the authorization process, a failure
of a webhook service would be devastating for a cluster. Therefore, we
generally recommend not using external authorization modules unless
you completely vet and are comfortable with your cluster failure modes
if the webhook service becomes unreachable or unavailable.

Summary

In this chapter, we covered the foundational topics of admission and
authorization and covered best practices. Put these skills to use by determining
the best admission and authorization configuration that allows you to customize
the controls and policies needed for the life of your cluster.

Chapter 18. Conclusion

The primary strength of Kubernetes is its modularity and generality. Nearly
every kind of application that you might want to deploy you can fit within
Kubernetes, and no matter what kind of adjustments or tuning you need to make
to your system, they’re generally possible.

Of course, this modularity and generality come at a cost, and that cost is a
reasonable amount of complexity. Understanding how the APIs and components
of Kubernetes work is critical to successfully unlocking the power of Kubernetes
to make your application development, management, and deployment easier and
more reliable.

Likewise, understanding how to link Kubernetes up with a wide variety of
external systems and practices as varied as an on-premises database and a
Continuous Delivery system is critical to efficiently making use of Kubernetes in
the real world.

Throughout this book we have worked to provide concrete real-world experience
on specific topics that you will likely encounter whether you are a newcomer to
Kubernetes or an experienced administrator. Regardless of whether you are
facing a new area in which you need to become an expert, or you simply want a
refresher about how others have addressed a familiar problem, hopefully, the
chapters in this book have enabled you to learn from our experience. We also
hope that in this learning, you gain the skills and confidence to use Kubernetes
to its fullest capabilities. Thank you and we look forward to seeing you out in the
real world!

Index

A

A/B testing (see canary deployments)
ABAC (Attribute-Based Access Control), ABAC, Authorization Best Practices

access control

NetworkPolicy API and, Network Security Policy
role-based (see RBAC)
secrets and, Managing Authentication with Secrets

admission controllers, Admission Controllers, Admission Control and
Authorization-Admission Control Best Practices

best practices, Admission Control Best Practices-Admission Control Best
Practices

ConfigMap/Secrets and, Common Best Practices for the ConfigMap and
Secrets APIs

defined, What Are They?

importance of, Why Are They Important?
sidecars and, Extending Kubernetes Clusters
types, Admission Controller Types

webhook configuration, Configuring Admission Webhooks-Configuring
Admission Webhooks

affinity/anti-affinity, Pod Affinity and Anti-Affinity

alert fatigue, Alerting

alert thresholds, Alerting

alerting

best practices, Alerting
overview, Alerting
Amazon EC2, Monitoring Tools

Amazon Web Services (AWS), Exporting Services by Using Internal Load
Balancers

anomaly detection, Intrusion and Anomaly Detection Tooling
application configuration, Configuring an Application with ConfigMaps

application platforms

approaches to developing higher-level abstractions, Approaches to
Developing Higher-Level Abstractions

best practices for building, Building Application Platforms Best Practices

building on top of Kubernetes, Building Higher-Level Application Patterns
on Top of Kubernetes-Summary

design considerations, Design Considerations When Building Platforms-
Support Existing Mechanisms for Service and Service Discovery

design considerations when building platforms, Design Considerations
When Building Platforms-Support Existing Mechanisms for Service and
Service Discovery

extending Kubernetes, Extending Kubernetes-Extending the Kubernetes
User Experience

extending Kubernetes clusters, Extending Kubernetes Clusters-Extending
Kubernetes Clusters

extending Kubernetes UX, Extending the Kubernetes User Experience

support for existing mechanisms for service/service discovery, Support

Existing Mechanisms for Service and Service Discovery

support for exporting to a container image, Support Exporting to a
Container Image

application scaling, Application Scaling
Application Service, Managing Configuration Files
Attribute-Based Access Control (ABAC), ABAC, Authorization Best Practices

authentication, Secrets and, Managing Authentication with Secrets-Managing
Authentication with Secrets

authorization, Authorization-Authorization Best Practices

ABAC module, ABAC

best practices, Authorization Best Practices
modules, Authorization Modules-Webhook
webhook module, Webhook

autoscaling, for machine learning, Machine Leaning on Kubernetes Best
Practices

AWS (Amazon Web Services), Exporting Services by Using Internal Load
Balancers

AWS Container Insights, Monitoring Tools

Azure, Exporting Services by Using Internal Load Balancers
Azure Container Instances, Monitoring Tools

Azure CosmosDB, Multicluster Design Concerns

Azure Kubernetes Service, Monitoring Tools

Azure Monitor, Monitoring Tools

B

Berkeley Packet Filter (BPF), Intrusion and Anomaly Detection Tooling
best effort QoS, Resource Limits and Pod Quality of Service

black-box monitoring, Monitoring Techniques

blast radius, Testing in Production, Why Multiple Clusters?

blue/green deployments, Deployment Strategies

BPF (Berkeley Packet Filter), Intrusion and Anomaly Detection Tooling
bricking, Building a Development Cluster

burstable QoS, Resource Limits and Pod Quality of Service

C

cAdvisor, cAdvisor

canary deployments, Deployment Strategies

canary region, Canary Region

Canonical Name (see CNAME-based Kubernetes Services)

CD (see continuous delivery; continuous deployment; CI/CD pipeline)
certificate-based authentication, Onboarding Users

chaos engineering, Testing in Production

chaos experiment, A Simple Chaos Experiment

Chaos Toolkit, A Simple Chaos Experiment

chart (Helm file collection), Parameterizing Your Application by Using Helm
checkpoints, Checkpoints and saving models

CI (see continuous integration)

CI/CD pipeline, Continuous Integration, Testing, and Deployment-Summary

best practices for, Best Practices for CI/CD

chaos experiment, A Simple Chaos Experiment
container builds, Container Builds
container image tagging, Container Image Tagging

continuous deployment (CD), Continuous Deployment-Deployment
Strategies

deployment strategies, Deployment Strategies-Deployment Strategies
rolling upgrade, Performing a Rolling Upgrade
setting up CD, Setting Up CD
setting up CI, Setting Up CI-Setting Up CI
testing, Testing
testing in production, Testing in Production-Testing in Production
version control, Version Control
Classless Inter-Domain Routing (CIDR), Kubenet
Cloud Spanner, Multicluster Design Concerns
CloudWatch Container Insights, Monitoring Tools
Cluster API, Managing Multiple Cluster Deployments
Cluster Autoscaler add-on, Cluster autoscaling

cluster scaling, Cluster Scaling

autoscaling, Cluster autoscaling

manual, Manual scaling
cluster-level services, Cluster-Level Services
ClusterIP service type, Service Type ClusterIP

clusters

extending, Extending Kubernetes Clusters-Extending Kubernetes Clusters

mixed workload, for machine learning, Machine Leaning on Kubernetes
Best Practices

multiple (see multiple clusters)
shared vs. one per developer, Building a Development Cluster

CNAME-based Kubernetes Services, CNAME-Based Services for Stable DNS
Names

CNI plug-in
about, The CNI Plug-in

best practices, CNI Best Practices

compliance, multicluster design and, Why Multiple Clusters?
config resource, Data Replication
ConfigMaps

best practices, Common Best Practices for the ConfigMap and Secrets
APIs-Common Best Practices for the ConfigMap and Secrets APIs

common best practices for ConfigMap and Secrets APIs, Common Best
Practices for the ConfigMap and Secrets APIs-Common Best Practices for
the ConfigMap and Secrets APIs

configuration with, ConfigMaps

configuring an application with, Configuring an Application with
ConfigMaps

DNS server and, CNAME-Based Services for Stable DNS Names

configuration

common best practices for ConfigMap and Secrets APIs, Common Best
Practices for the ConfigMap and Secrets APIs-Common Best Practices for
the ConfigMap and Secrets APIs

Secrets for, Secrets

with ConfigMaps, Configuring an Application with ConfigMaps,
ConfigMaps

configuration drift, Continuous Deployment
constraint resource, Defining Constraints

constraint templates

defining, Introducing Gatekeeper, Defining Constraint Templates
elements of, Constraint template
constraints
best practices, Policy and Governance Best Practices
defining, Defining Constraints
Gatekeeper and, Constraint
operational characteristics, Defining Constraints
Consul, Service Meshes, Multicluster Design Concerns

container

intrusion/anomaly detection tooling, Intrusion and Anomaly Detection
Tooling

workload isolation and RuntimeClass, Workload Isolation and
RuntimeClass-Workload Isolation and RuntimeClass Best Practices

Container Advisor (cAdvisor), cAdvisor

container builds, Container Builds

container image tagging, Container Image Tagging
container images (see image management)

Container Insights, Monitoring Tools

Container Network Interface (CNI) (see CNI plug-in)
Container Storage Interface (CSI), Container Storage Interface and FlexVolume
continuous delivery (CD), Multicluster Design Concerns
(see also CI/CD pipeline)
continuous deployment (CD), Continuous Deployment-Deployment Strategies
defined, Continuous Deployment
deployment strategies, Deployment Strategies-Deployment Strategies
setting up, Setting Up CD
continuous integration (CI), Continuous Integration
(see also CI/CD pipeline)
defined, Continuous Integration
setting up, Setting Up CI-Setting Up CI
control-plane components, Kubernetes Metrics Overview
Core CNI project, The CNI Plug-in
CoreDNS server, CNAME-Based Services for Stable DNS Names
CSI (Container Storage Interface), Container Storage Interface and FlexVolume
custom controllers, Deployment and Management Patterns
Custom Metrics API, Metrics Server, HPA with Custom Metrics

custom resource definitions (CRDs), Managing Namespaces, Introducing
Gatekeeper

adding resources to existing cluster with, Extending Kubernetes Clusters
constraint templates as, Defining Constraint Templates

defined, Deployment and Management Patterns

D

data replication

Gatekeeper and, Data Replication
multicluster design and, Multicluster Design Concerns
data scientists, machine learning and, Data Scientist Concerns

database

deploying a simple stateful database, Deploying a Simple Stateful
Database-Deploying a Simple Stateful Database

making accessible from Kubernetes (see importing services into
Kubernetes)

Datadog, Monitoring Tools

dataset storage, for machine learning, Dataset storage and distribution among
worker nodes during training

debugging, Enabling Testing and Debugging

(see also logging)
declarative model, Managing Configuration Files, Releases
DefaultStorageClass admission plug-in, Storage Classes
dependencies, installation of, Initial Setup
deployment

best policy/governance practices, Policy and Governance Best Practices
sample code for, Putting It All Together-Putting It All Together

stateful database, Deploying a Simple Stateful Database-Deploying a
Simple Stateful Database

strategies for CI/CD pipeline, Deployment Strategies-Deployment

Strategies

versioning, releases, and rollouts, Versioning, Releases, and Rollouts-
Summary

Deployment object, Enabling Active Development
Deployment resource, Creating a Replicated Application
developer workflows (see workflows)

development cluster

building, Building a Development Cluster
goals, Goals
onboarding users, Onboarding Users-Onboarding Users

setting up shared cluster for multiple developers, Setting Up a Shared
Cluster for Multiple Developers-Cluster-Level Services

development environment, Setting Up a Development Environment Best
Practices

disruption budgets, PodDisruptionBudgets

distributed training, Distributed Training on Kubernetes, Machine Leaning on
Kubernetes Best Practices

DNS servers/resolvers, CNAME-Based Services for Stable DNS Names
Docker image, Container Image Tagging

docker-registry secrets, Secrets

Domain Name System (DNS), Load-Balancing Traffic Around the World
dot notation, Versioning

drivers, machine learning, Libraries, Drivers, and Kernel Modules

dynamic admission controllers, Admission Controller Types

E

EFK (Elasticsearch, Fluentd, and Kibana) stack, Logging by Using an EFK
Stack-Logging by Using an EFK Stack, Deployment and Management Patterns

exporting services from Kubernetes, Exporting Services from Kubernetes-
Integrating External Machines and Kubernetes

integrating external machines and Kubernetes, Integrating External
Machines and Kubernetes

internal load balancers for, Exporting Services by Using Internal Load
Balancers

NodePorts for, Exporting Services on NodePorts
external identity systems, Onboarding Users

external services

best practices for connecting cluster and external services, Connecting
Cluster and External Services Best Practices

exporting services from Kubernetes, Exporting Services from Kubernetes-
Integrating External Machines and Kubernetes

importing services into Kubernetes, Importing Services into Kubernetes-
Active Controller-Based Approaches

integrating with Kubernetes, Integrating External Services and Kubernetes-
Summary

sharing services between Kubernetes, Sharing Services Between
Kubernetes

third-party tools, Third-Party Tools

ExternalName service type, Service Type ExternalName

F

failurePolicy field, Admission Control Best Practices

Falco, Intrusion and Anomaly Detection Tooling

feature flag, Deployment Strategies

Federation, Kubernetes Federation-Kubernetes Federation

Federation v2 (KubeFed), Kubernetes Federation-Kubernetes Federation
filesystem layout, Managing Configuration Files

flaky tests, Goals

flat networks, Multicluster Design Concerns

FlexVolume, Container Storage Interface and FlexVolume

Fluentd, Logging by Using an EFK Stack

Flux, The GitOps Approach to Managing Clusters-The GitOps Approach to
Managing Clusters

Four Golden Signals, Monitoring Patterns, CNI Best Practices

G

Gardener, Multicluster Management Tools

Gatekeeper, Introducing Gatekeeper-Gatekeeper Next Steps

audit and, Audit

constraint, Constraint

constraint templates, Constraint template

data replication, Data Replication

defining constraint templates, Defining Constraint Templates
defining constraints, Defining Constraints

demonstration content, Becoming Familiar with Gatekeeper

example policies, Example Policies
next steps for, Gatekeeper Next Steps
rego and, Rego
terminology, Gatekeeper Terminology
UX, UX
GCP Stackdriver, Monitoring Tools
generic secrets, Secrets
Git, Managing Configuration Files

GitOps, The GitOps Approach to Managing Clusters-The GitOps Approach to
Managing Clusters

GKE (Google Kubernetes Engine), Monitoring Tools

global deployment, Worldwide Application Distribution and Staging-Summary

best practices, Worldwide Rollout Best Practices

canary region, Canary Region

constructing a global rollout, Constructing a Global Rollout
distributing your image, Distributing Your Image

identifying region types, Identifying Region Types

load-balancing traffic, Load-Balancing Traffic Around the World
parameterizing your deployment, Parameterizing Your Deployment
pre-rollout validation, Pre-Rollout Validation-Pre-Rollout Validation

reliably rolling out software, Reliably Rolling Out Software Around the
World-Constructing a Global Rollout

responding to problems, When Something Goes Wrong

Google Cloud Spanner, Multicluster Design Concerns

Google Four Golden Signals, Monitoring Patterns, CNI Best Practices
Google Kubernetes Engine (GKE), Monitoring Tools
Grafana, Monitoring Kubernetes Using Prometheus

graphics processing units (GPUs), Model Training on Kubernetes-Training your
first model on Kubernetes

guaranteed QoS, Resource Limits and Pod Quality of Service

H

hard multitenancy, Why Multiple Clusters?
Hardware Security Module (HSM), Best practices specific to secrets

headless service, Creating a TCP Load Balancer by Using Services, Service
Type ClusterIP

Heapster, Metrics Server

Helm

life cycle hook with, Common Best Practices for the ConfigMap and
Secrets APIs

parameterizing an application with, Parameterizing Your Application by
Using Helm-Parameterizing Your Application by Using Helm

rollouts and, Best Practices for Versioning, Releases, and Rollouts
testing with, Testing
Tiller as default service account, RBAC Best Practices
tracking releases with, Releases
helm lint, Testing

Horizontal Pod Autoscaler (HPA), Metrics Server, Application Scaling-HPA
with Custom Metrics, Scaling with HPA

HSM (Hardware Security Module), Best practices specific to secrets
HTTP protocol management, Ingress and Ingress Controllers

HTTP traffic, external Ingress for, Setting Up an External Ingress for HTTP
Traffic

hyperparameter tuning, Model Training on Kubernetes

image management, Best Practices for Image Management

importing services into Kubernetes, Importing Services into Kubernetes-Active
Controller-Based Approaches

active controller-based approaches, Active Controller-Based Approaches

CNAME-based services for stable DNS names, CNAME-Based Services
for Stable DNS Names

selector-less services for stable IP addresses, Selector-Less Services for
Stable IP Addresses

InfluxDB, Monitoring Tools
Infrastructure as Code (IaC), Multicluster Design Concerns
Infrastructure as Software, Deployment and Management Patterns

Ingress

about, Ingress and Ingress Controllers
best practices, Services and Ingress Controllers Best Practices

routing traffic to a static file server with, Using Ingress to Route Traffic to a
Static File Server-Using Ingress to Route Traffic to a Static File Server

setting up for HTTP traffic, Setting Up an External Ingress for HTTP
Traffic

integration testing, Pre-Rollout Validation-Pre-Rollout Validation

internal load balancers, exporting services using, Exporting Services by Using
Internal Load Balancers

intrusion detection, Intrusion and Anomaly Detection Tooling
involuntary disruptions, PodDisruptionBudgets

Istio, Service Meshes

J

journal service (see setting up a basic service)
JSON, YAML versus, Managing Configuration Files

Just in Time (JIT) access systems, RBAC Best Practices

K

kernel modules, Libraries, Drivers, and Kernel Modules
Kibana, Logging by Using an EFK Stack

KQueen, Multicluster Management Tools

kube-proxy, Integrating External Machines and Kubernetes
kube-state-metrics, kube-state-metrics

kube-system namespace, Admission Control Best Practices

kubectl

audit results and, Audit

CRDs and, Managing Namespaces

debugging tools, Enabling Testing and Debugging

expanding UX with, Extending the Kubernetes User Experience

namespace flag, Managing Resources by Using Namespaces

kubectx, Multicluster Management Tools
KubeFed (Federation v2), Kubernetes Federation-Kubernetes Federation

Kubenet

about, Kubenet
best practices, Kubenet Best Practices
kubens, Multicluster Management Tools
Kubernetes Federation, Kubernetes Federation-Kubernetes Federation

Kubernetes scheduler, Kubernetes Scheduler-Taints and Tolerations

advanced scheduling techniques, Advanced Scheduling Techniques-Taints
and Tolerations

nodeSelector, nodeSelector

pod affinity/anti-affinity, Pod Affinity and Anti-Affinity
predicate function, Predicates

priorities, Priorities

taints, Taints and Tolerations-Taints and Tolerations
tolerations, Taints and Tolerations

Kubernetes Services

creating TCP load balancer with, Creating a TCP Load Balancer by Using
Services

elements of, Active Controller-Based Approaches

Kubernetes Volumes (see Volumes)

L

libraries, machine learning, Libraries, Drivers, and Kernel Modules

Limit (resource request), Creating a Replicated Application
LimitRange, LimitRange
Linkerd2, Service Meshes
linters, Extending Kubernetes Clusters
liveness probes, Alerting
load balancing, L.oad-Balancing Traffic Around the World
LoadBalancer service type, Service Type LoadBalancer
logging, Logging Overview-Logging

alerting and, Alerting

best practices, Logging

EFK stack for, Logging by Using an EFK Stack-Logging by Using an EFK
Stack

metrics collection versus log collection, Metrics Versus Logs
overview, Logging Overview-Logging Overview
tools for, Tools for Logging

Logging as a Service (LaaS), Cluster-Level Services

M

machine learning, Running Machine Learning in Kubernetes-Summary

advantages of Kubernetes for, Why Is Kubernetes Great for Machine
Learning?

best practices, Machine Leaning on Kubernetes Best Practices
checkpoints and saving models, Checkpoints and saving models

data scientist concerns, Data Scientist Concerns

dataset storage/distribution among worker nodes during training, Dataset
storage and distribution among worker nodes during training

distributed training, Distributed Training on Kubernetes

for Kubernetes cluster admins, Machine Learning for Kubernetes Cluster
Admins-Specialized Protocols

libraries, drivers, and kernel modules, Libraries, Drivers, and Kernel
Modules

model training, Model Training on Kubernetes-Libraries, Drivers, and
Kernel Modules

networking, Networking
resource constraints, Resource Constraints
scheduling idiosyncrasies, Scheduling idiosyncrasies
specialized hardware, Specialized Hardware
specialized protocols, Specialized Protocols
storage, Storage
workflow phases, Machine Learning Workflow
master branch, Version Control
Message Passing Interface (MPI), Specialized Protocols

metrics

cAdvisor, cAdvisor

choosing metrics to monitor, What Metrics Do I Monitor?
kube-state-metrics, kube-state-metrics

log collection versus metrics collection, Metrics Versus Logs

metrics-server, Metrics Server

overview, Kubernetes Metrics Overview-kube-state-metrics

Metrics Aggregator, HPA with Custom Metrics

Metrics API, Metrics Server

Metrics Server API, HPA with Custom Metrics

metrics-server, Metrics Server

Microsoft Azure, Exporting Services by Using Internal Load Balancers
Microsoft Azure CosmosDB, Multicluster Design Concerns

Microsoft Azure Monitor, Monitoring Tools

MNIST dataset, Training your first model on Kubernetes

modules, authorization, Authorization Modules-Webhook

monitoring, Monitoring and Logging in Kubernetes-Monitoring Kubernetes
Using Prometheus

best practices, Monitoring
choosing metrics to monitor, What Metrics Do I Monitor?
cloud provider tools, Monitoring Tools

Kubernetes metrics overview, Kubernetes Metrics Overview-kube-state-
metrics

metrics vs. logs, Metrics Versus Logs
patterns, Monitoring Patterns

Prometheus for, Monitoring Kubernetes Using Prometheus-Monitoring
Kubernetes Using Prometheus

techniques for, Monitoring Techniques
tools for, Monitoring Tools-Monitoring Tools

MPI (Message Passing Interface), Specialized Protocols

multiple clusters, Managing Multiple Clusters-Summary

best practices for management of, Managing Multiple Clusters Best
Practices

deployment/management patterns, Deployment and Management Patterns
design concerns, Multicluster Design Concerns

GitOps approach to managing, The GitOps Approach to Managing
Clusters-The GitOps Approach to Managing Clusters

Kubernetes Federation, Kubernetes Federation-Kubernetes Federation
managing, Managing Multiple Clusters-Summary

managing deployments of, Managing Multiple Cluster Deployments-
Deployment and Management Patterns

reasons for having, Why Multiple Clusters?-Why Multiple Clusters?
tools for managing, Multicluster Management Tools
MutatingWebhookConfiguration, Configuring Admission Webhooks

mutation, Admission Control Best Practices

N

namespaces

aligning workloads to, Network Policy Best Practices

as scopes for deployment of services, Setting Up a Shared Cluster for
Multiple Developers

creating/securing, Creating and Securing a Namespace-Creating and
Securing a Namespace

for resource management, Managing Resources by Using Namespaces

managing, Managing Namespaces

multitenancy and, Why Multiple Clusters?
setting ResourceQuotas on, ResourceQuota-ResourceQuota
naming, of images, Best Practices for Image Management
NCCL (NVIDIA Collective Communications Library), Specialized Protocols
Netflix, chaos engineering at, Testing in Production
network address translation (NAT), Multicluster Design Concerns

networking, Networking, Network Security, and Service Mesh-Network Policy
Best Practices

Kubernetes network principles, Kubernetes Network Principles-Kubernetes
Network Principles

machine learning and, Networking
plug-ins, Network Plug-ins-CNI Best Practices
security policy, Network Security Policy-Network Policy Best Practices

service API and, Services in Kubernetes-Services and Ingress Controllers
Best Practices

NetworkPolicy API, Network Security Policy-Network Policy Best Practices
about, Network Security Policy-Network Security Policy

best practices, Network Policy Best Practices

NGINX, Using Ingress to Route Traffic to a Static File Server, Pod Affinity and
Anti-Affinity, Ingress and Ingress Controllers

NodePorts, Service Type NodePort, Exporting Services on NodePorts
nodeSelector, nodeSelector
NoSQL databases, Multicluster Design Concerns

NVIDIA Collective Communications Library (NCCL), Specialized Protocols

NVIDIA device plug-in, Specialized Hardware

o

onboarding, Goals, Onboarding Users-Onboarding Users
Open Policy Agent (OPA), Cloud-Native Policy Engine
data replication and, Data Replication
Gatekeeper and, Gatekeeper Terminology
operational management, Multicluster Design Concerns
Operator Framework, Operators

Operators (cloud native software), Operators

P

parameterizing

global deployments, Parameterizing Your Deployment

of application with Helm, Parameterizing Your Application by Using Helm-
Parameterizing Your Application by Using Helm

passwords, Managing Authentication with Secrets-Managing Authentication
with Secrets

PersistentVolume, Deploying a Simple Stateful Database, PersistentVolume

PersistentVolumeClaim, Deploying a Simple Stateful Database,
PersistentVolumeClaims

plug-ins
admission control best practices, Admission Control Best Practices
CNI, The CNI Plug-in

Kubenet, Kubenet-CNI Best Practices

network, Network Plug-ins-CNI Best Practices
PodDisruptionBudget, PodDisruptionBudgets

pods

admission controllers, Admission Controllers
affinity/anti-affinity, Pod Affinity and Anti-Affinity
disruption budgets, PodDisruptionBudgets
LimitRange, LimitRange

resource limits and QoS, Resource Limits and Pod Quality of Service-
Resource Limits and Pod Quality of Service

resource management, Pod Resource Management-Vertical Pod Autoscaler
resource request, Resource Request
security, Pod and Container Security-PodSecurityPolicy Next Steps

PodSecurityPolicy API, PodSecurityPolicy API-PodSecurityPolicy Next Steps,
Why Are They Important?

best practices, PodSecurityPolicy Best Practices
challenges in real-world environments, PodSecurityPolicy Challenges
enabling, Enabling PodSecurityPolicy-Enabling PodSecurityPolicy

example, Anatomy of a PodSecurityPolicy-Anatomy of a
PodSecurityPolicy

policy and governance, Policy and Governance for Your Cluster-Summary
admission controllers and, Why Are They Important?
audit, Audit
best practices, Policy and Governance Best Practices

cloud-native policy engine, Cloud-Native Policy Engine

Gatekeeper (see Gatekeeper)
importance of, Why Policy and Governance Are Important
Kubernetes context for, How Is This Policy Different?
predicate function, Predicates
preStop hook, Deployment Strategies, StatefulSet and Operator Best Practices
priority value, Priorities
Prometheus, Monitoring Tools

monitoring multiple clusters with, Deployment and Management Patterns-
Deployment and Management Patterns

monitoring with, Monitoring Kubernetes Using Prometheus-Monitoring
Kubernetes Using Prometheus

prometheus-operator, Deployment and Management Patterns-Deployment and
Management Patterns

Q

Quality of Service (QoS), resource limits and, Resource Limits and Pod Quality
of Service-Resource Limits and Pod Quality of Service

R

Rancher, Multicluster Management Tools

RBAC (role-based access control), RBAC-RBAC Best Practices

best practices, RBAC Best Practices-RBAC Best Practices

locking down admission webhook configurations, Admission Control Best
Practices

main components, RBAC Primer

PodSecurityPolicy API and, Anatomy of a PodSecurityPolicy,

PodSecurityPolicy Best Practices
RoleBinding, RoleBindings
roles, Roles
rules, Rules
subjects, Subjects
RDMA (Remote Direct Memory Access), Networking
readiness probe, Deployment Strategies
recreate strategy, Rollouts
RED (rate, errors, duration) monitoring pattern, Monitoring Patterns

Redis, Managing Authentication with Secrets-Managing Authentication with
Secrets

rego

defined, Rego

policy definition and, Defining Constraint Templates
releases, Releases, Best Practices for Versioning, Releases, and Rollouts
Remote Direct Memory Access (RDMA), Networking
ReplicaSet, Creating a Replicated Application, Rollouts, Stateful Applications
Request (resource request), Creating a Replicated Application

resource management, Resource Management—Summary

admission controllers and, Why Are They Important?

advanced scheduling techniques, Advanced Scheduling Techniques-Taints
and Tolerations

application scaling, Application Scaling

best practices, Resource Management Best Practices

cluster scaling, Cluster Scaling

HPA with custom metrics, Scaling with HPA

Kubernetes scheduler, Kubernetes Scheduler-Taints and Tolerations
LimitRange, LimitRange

namespaces for, Managing Resources by Using Namespaces

pod disruption budgets, PodDisruptionBudgets

pods, Pod Resource Management-Vertical Pod Autoscaler

resource limits and pod QoS, Resource Limits and Pod Quality of Service-
Resource Limits and Pod Quality of Service

resource request, Resource Request
setting ResourceQuotas on namespaces, ResourceQuota-ResourceQuota

Vertical Pod Autoscaler, Vertical Pod Autoscaler

Resource Metrics API, Metrics Server

resource request, Resource Request

ResourceQuotas, Creating and Securing a Namespace, ResourceQuota-
ResourceQuota

role-based access control (see RBAC)

RoleBinding, Creating and Securing a Namespace, RoleBindings

rolling updates, Deployment Strategies-Deployment Strategies

rolling upgrade, Performing a Rolling Upgrade

rollingUpdate, Rollouts

rollouts, Rollouts

best practices for, Best Practices for Versioning, Releases, and Rollouts

strategies for CI/CD pipeline, Deployment Strategies-Deployment

Strategies

worldwide, Reliably Rolling Out Software Around the World-Constructing
a Global Rollout

rules, in RBAC, Rules

RuntimeClass

about, Workload Isolation and RuntimeClass-Runtime Implementations
best practices, Workload Isolation and RuntimeClass Best Practices
implementations, Runtime Implementations

using, Using RuntimeClass

workload isolation and, Workload Isolation and RuntimeClass-Workload
Isolation and RuntimeClass Best Practices

S

scaling

application (see application scaling)

application scaling, Application Scaling

clusters (see cluster scaling)

HPA with custom metrics, Scaling with HPA

VPA, Vertical Pod Autoscaler
scheduler (see Kubernetes scheduler)
scoping, admission webhook, Admission Control Best Practices
secret password, Managing Authentication with Secrets

Secrets

best practices specific to, Best practices specific to secrets

common best practices for ConfigMap and Secrets APIs, Common Best
Practices for the ConfigMap and Secrets APIs-Common Best Practices for
the ConfigMap and Secrets APIs

configuration with, Secrets

managing authentication with, Managing Authentication with Secrets-
Managing Authentication with Secrets

security, RBAC
(see also admission controllers; authorization)
admission controllers, Admission Controllers
admission controllers and, Why Are They Important?
admission webhook best practices, Admission Control Best Practices

intrusion/anomaly detection tooling, Intrusion and Anomaly Detection
Tooling

multicluster design and, Why Multiple Clusters?

NetworkPolicy API, Network Security Policy-Network Policy Best
Practices

pods, Pod and Container Security-PodSecurityPolicy Next Steps

PodSecurityPolicy API, PodSecurityPolicy API-PodSecurityPolicy Next
Steps

RBAC, RBAC-RBAC Best Practices

selector-less Kubernetes Services, Selector-Less Services for Stable IP
Addresses

semantic versioning, Versioning, Best Practices for Versioning, Releases, and
Rollouts

service API, Services in Kubernetes-Services and Ingress Controllers Best
Practices

best practices, Services and Ingress Controllers Best Practices
ClusterIP service type, Service Type ClusterIP
ExternalName service type, Service Type ExternalName
Ingress/Ingress controllers, Ingress and Ingress Controllers
LoadBalancer service type, Service Type LoadBalancer
NodePort service type, Service Type NodePort

service discovery, Multicluster Design Concerns

service mesh, Service Meshes-Service Mesh Best Practices

about, Service Meshes-Service Meshes
best practices, Service Mesh Best Practices
Service Mesh Interface (SMI), Service Meshes

service type

ClusterIP, Service Type ClusterIP
ExternalName, Service Type ExternalName
LoadBalancer, Service Type LoadBalancer
NodePort, Service Type NodePort
Service-Level Objectives (SLOs), Alerting

services, Creating a TCP Load Balancer by Using Services

(see also Kubernetes Services)
cluster-level, Cluster-Level Services

creating TCP load balancer with, Creating a TCP Load Balancer by Using
Services

deployment best practices, Deploying Services Best Practices

external (see external services)
setting up basic (see setting up a basic service)

setting up a basic service, Setting Up a Basic Service-Summary
application overview, Application Overview

configuring an application with ConfigMaps, Configuring an Application
with ConfigMaps

creating a replicated application, Creating a Replicated Application-
Creating a Replicated Application

creating a replicated service using deployments, Creating a Replicated
Service Using Deployments-Creating a Replicated Application

creating a TCP load balancer by using Services, Creating a TCP Load
Balancer by Using Services

deploying a simple stateful database, Deploying a Simple Stateful
Database-Deploying a Simple Stateful Database

deploying services best practices, Deploying Services Best Practices
image management best practices, Best Practices for Image Management

managing authentication with Secrets, Managing Authentication with
Secrets-Managing Authentication with Secrets

managing configuration files, Managing Configuration Files

parameterizing application with Helm, Parameterizing Your Application by
Using Helm-Parameterizing Your Application by Using Helm

setting up external Ingress for HTTP traffic, Setting Up an External Ingress
for HTTP Traffic

using Ingress to route traffic to a static file server, Using Ingress to Route
Traffic to a Static File Server-Using Ingress to Route Traffic to a Static File
Server

shared cluster

cluster-level services, Cluster-Level Services

creating/securing namespace, Creating and Securing a Namespace-Creating
and Securing a Namespace

managing namespaces, Managing Namespaces
onboarding users, Onboarding Users-Onboarding Users

setting up for multiple developers, Setting Up a Shared Cluster for Multiple
Developers-Cluster-Level Services

sidecar containers, Extending Kubernetes Clusters

sidecar pattern, Logging Overview

Sidecar proxies, Service Meshes

SLOs (Service-Level Objectives), Alerting

smart scheduling, Machine Leaning on Kubernetes Best Practices
SMI (Service Mesh Interface), Service Meshes

soft multitenancy, Why Multiple Clusters?

Software as a Service (SaaS)

hard multitenancy and, Why Multiple Clusters?

state management and, Deploying a Simple Stateful Database
Stackdriver Kubernetes Engine Monitoring, Monitoring Tools
standard admission controllers, Admission Controller Types

state
Kubernetes storage, Kubernetes Storage-Kubernetes Storage Best Practices

(see also storage)

managing, Managing State and Stateful Applications-Summary

volumes and volume mounts, Volumes and Volume Mounts
stateful applications, Stateful Applications-Summary
Operators, Operators

StatefulSets, StatefulSets

stateful database, Deploying a Simple Stateful Database-Deploying a Simple
Stateful Database

StatefulSets

about, StatefulSets
best practices, StatefulSet and Operator Best Practices

static file server, Using Ingress to Route Traffic to a Static File Server-Using
Ingress to Route Traffic to a Static File Server

storage

best practices, Kubernetes Storage Best Practices
for machine learning, Storage
PersistentVolume, Deploying a Simple Stateful Database, PersistentVolume

PersistentVolumeClaim, Deploying a Simple Stateful Database,
PersistentVolumeClaims

PersistentVolumeClaims, PersistentVolumeClaims
state and, Kubernetes Storage-Kubernetes Storage Best Practices
StorageClass objects, Storage Classes

subjects, in RBAC, Subjects

supply-chain attacks, Best Practices for Image Management

Sysdig Monitor, Monitoring Tools

T

taint-based eviction, Taints and Tolerations

taints, Taints and Tolerations-Taints and Tolerations, Machine Leaning on
Kubernetes Best Practices

TCP (Transmission Control Protocol), Setting Up an External Ingress for HTTP
Traffic, Creating a TCP Load Balancer by Using Services

TCP load balancer, Creating a TCP Load Balancer by Using Services
templating system, Parameterizing Your Application by Using Helm
Terraform, Multicluster Design Concerns

test flakiness, Goals

testing, Goals

chaos experiment for, A Simple Chaos Experiment

CI/CD pipeline, Testing

developer workflows and, Enabling Testing and Debugging

in production, Testing in Production-Testing in Production

pre-global rollout validation, Pre-Rollout Validation-Pre-Rollout Validation
Tiller, RBAC Best Practices
time to live (TTL), Managing Namespaces
tls secret, Secrets

tolerations, Taints and Tolerations, Machine Leaning on Kubernetes Best
Practices

traffic shifting (see blue/green deployments)

Transmission Control Protocol (TCP), Setting Up an External Ingress for HTTP
Traffic, Creating a TCP Load Balancer by Using Services

Transport Layer Security (TLS) secret, Secrets

Transport Layer Security (TLS) termination, Ingress and Ingress Controllers
troubleshooting, When Something Goes Wrong

TTL (time to live), Managing Namespaces

U

USE (utilization, saturation, errors) monitoring pattern, Monitoring Patterns

UX (user experience)

extending/enhancing, Extending the Kubernetes User Experience

Gatekeeper and, UX

Vv

ValidatingWebhookConfiguration, Configuring Admission Webhooks
validation, pre-global rollout, Pre-Rollout Validation-Pre-Rollout Validation

versioning, Versioning

best practices for, Best Practices for Versioning, Releases, and Rollouts
ConfigMap and, Configuring an Application with ConfigMaps
for CI/CD pipeline, Version Control
Vertical Pod Autoscaler (VPA), Metrics Server, Vertical Pod Autoscaler
Visual Studio (VS) Code, Enabling Testing and Debugging

volumeMounts, Common Best Practices for the ConfigMap and Secrets APIs,
Volumes and Volume Mounts

Volumes, Managing Authentication with Secrets, Volumes and Volume Mounts

best practices, Volume Best Practices
defined, Managing Authentication with Secrets

FlexVolume, Container Storage Interface and FlexVolume

PersistentVolume, Deploying a Simple Stateful Database, PersistentVolume

PersistentVolumeClaim, Deploying a Simple Stateful Database,
PersistentVolumeClaims

voluntary evictions, PodDisruptionBudgets
VPA (Vertical Pod Autoscaler), Metrics Server, Vertical Pod Autoscaler

VS (Visual Studio) Code, Enabling Testing and Debugging

W

Weaveworks Flux, The GitOps Approach to Managing Clusters-The GitOps
Approach to Managing Clusters

web application firewall (WAF), Exporting Services from Kubernetes
webhook authorization module, Webhook

webhook configuration, Configuring Admission Webhooks-Configuring
Admission Webhooks

white-box monitoring, Monitoring Techniques
worker-node components, Kubernetes Metrics Overview

workflows, Developer Workflows-Summary

building a development cluster, Building a Development Cluster

development environment best practices, Setting Up a Development
Environment Best Practices

enabling active development, Enabling Active Development
enabling developer workflows, Enabling Developer Workflows
enabling testing/debugging, Enabling Testing and Debugging
goals for building out development clusters, Goals

initial setup, Initial Setup

setting up shared cluster for multiple developers, Setting Up a Shared
Cluster for Multiple Developers-Cluster-Level Services

workload isolation, Workload Isolation and RuntimeClass Best Practices

(see also PodSecurityPolicy API; RuntimeClass)

worldwide application distribution/staging (see global deployment)

Y

YAML, JSON versus, Managing Configuration Files

About the Authors

Brendan Burns is a distinguished engineer at Microsoft Azure and cofounder of
the Kubernetes open source project. He’s been building cloud applications for
more than a decade.

Eddie Villalba is a software engineer with Microsoft’s Commercial Software
Engineering division, focusing on open source cloud and Kubernetes. He’s
helped many real-world users adopt Kubernetes for their applications.

Dave Strebel is a global cloud native architect at Microsoft Azure focusing on
open source cloud and Kubernetes. He’s deeply involved in the Kubernetes open
source project, helping with the Kubernetes release team and leading SIG-Azure.

Lachlan Evenson is a principal program manager on the container compute
team at Microsoft Azure. He’s helped numerous people onboard to Kubernetes
through both hands-on teaching and conference talks.

Colophon

The animal on the cover of Kubernetes Best Practices is an Old World mallard
duck (Anas platyrhynchos), a kind of dabbling duck that feeds on the surface of
water rather than diving for food. Species of Anas are typically separated by
their ranges and behavioral cues; however, mallards frequently interbreed with
other species, which has introduced some fully fertile hybrids.

Mallard ducklings are precocial and capable of swimming as soon as they hatch.
Juveniles begin flying between three and four months of age. They reach full
maturity at 14 months and have an average life expectancy of 3 years.

The mallard is a medium-sized duck that is just slightly heavier than most
dabbling ducks. Adults average 23 inches long with a wingspan of 36 inches,
and weigh 2.5 pounds. Ducklings have yellow and black plumage. At around six
months of age, males and females can be distinguished visually as their coloring
changes. Males have green head feathers, a white collar, purple-brown breast,
gray-brown wings, and a yellowish-orange bill. Females are mottled brown,
which is the color of most female dabbling ducks.

Mallards have a wide range of habitats across both northern and southern
hemispheres. They are found in fresh- and salt-water wetlands, from lakes to
rivers to seashores. Northern mallards are migratory, and winter father south.
The mallard diet is highly variable, and includes plants, seeds, roots, gastropods,
invertebrates, and crustaceans.

Brood parasites will target mallard nests. These are species of other birds who
may lay their eggs in the mallard nest. If the eggs resemble those of the mallard,
the mallard will accept them and raise the hatchlings with their own.

Mallards must contend with a wide variety of predators, most notably foxes and
birds of prey such as falcons and eagles. They have also been preyed upon by
catfish and pike. Crows, swans, and geese have all been known to attack the
ducks over territorial disputes. Unihemispheric sleep (or sleeping with one eye
open), which allows one hemisphere of the brain to sleep while the other is
awake, was first noted in mallards. It is common among aquatic birds as a
predation-avoidance behavior.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Jose Marzan, based on a black and white engraving
from The Animal World. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Setting Up a Basic Service
	Application Overview
	Managing Configuration Files
	Creating a Replicated Service Using Deployments
	Best Practices for Image Management
	Creating a Replicated Application

	Setting Up an External Ingress for HTTP Traffic
	Configuring an Application with ConfigMaps
	Managing Authentication with Secrets
	Deploying a Simple Stateful Database
	Creating a TCP Load Balancer by Using Services
	Using Ingress to Route Traffic to a Static File Server
	Parameterizing Your Application by Using Helm
	Deploying Services Best Practices
	Summary

	2. Developer Workflows
	Goals
	Building a Development Cluster
	Setting Up a Shared Cluster for Multiple Developers
	Onboarding Users
	Creating and Securing a Namespace
	Managing Namespaces
	Cluster-Level Services

	Enabling Developer Workflows
	Initial Setup
	Enabling Active Development
	Enabling Testing and Debugging
	Setting Up a Development Environment Best Practices
	Summary

	3. Monitoring and Logging in Kubernetes
	Metrics Versus Logs
	Monitoring Techniques
	Monitoring Patterns
	Kubernetes Metrics Overview
	cAdvisor
	Metrics Server
	kube-state-metrics

	What Metrics Do I Monitor?
	Monitoring Tools
	Monitoring Kubernetes Using Prometheus
	Logging Overview
	Tools for Logging
	Logging by Using an EFK Stack
	Alerting
	Best Practices for Monitoring, Logging, and Alerting
	Monitoring
	Logging
	Alerting

	Summary

	4. Configuration, Secrets, and RBAC
	Configuration Through ConfigMaps and Secrets
	ConfigMaps
	Secrets

	Common Best Practices for the ConfigMap and Secrets APIs
	RBAC
	RBAC Primer
	RBAC Best Practices

	Summary

	5. Continuous Integration, Testing, and Deployment
	Version Control
	Continuous Integration
	Testing
	Container Builds
	Container Image Tagging
	Continuous Deployment
	Deployment Strategies
	Testing in Production
	Setting Up a Pipeline and Performing a Chaos Experiment
	Setting Up CI
	Setting Up CD
	Performing a Rolling Upgrade
	A Simple Chaos Experiment

	Best Practices for CI/CD
	Summary

	6. Versioning, Releases, and Rollouts
	Versioning
	Releases
	Rollouts
	Putting It All Together
	Best Practices for Versioning, Releases, and Rollouts

	Summary

	7. Worldwide Application Distribution and Staging
	Distributing Your Image
	Parameterizing Your Deployment
	Load-Balancing Traffic Around the World
	Reliably Rolling Out Software Around the World
	Pre-Rollout Validation
	Canary Region
	Identifying Region Types
	Constructing a Global Rollout

	When Something Goes Wrong
	Worldwide Rollout Best Practices
	Summary

	8. Resource Management
	Kubernetes Scheduler
	Predicates
	Priorities

	Advanced Scheduling Techniques
	Pod Affinity and Anti-Affinity
	nodeSelector
	Taints and Tolerations

	Pod Resource Management
	Resource Request
	Resource Limits and Pod Quality of Service
	PodDisruptionBudgets
	Managing Resources by Using Namespaces
	ResourceQuota
	LimitRange
	Cluster Scaling
	Application Scaling
	Scaling with HPA
	HPA with Custom Metrics
	Vertical Pod Autoscaler

	Resource Management Best Practices
	Summary

	9. Networking, Network Security, and Service Mesh
	Kubernetes Network Principles
	Network Plug-ins
	Kubenet
	Kubenet Best Practices
	The CNI Plug-in
	CNI Best Practices

	Services in Kubernetes
	Service Type ClusterIP
	Service Type NodePort
	Service Type ExternalName
	Service Type LoadBalancer
	Ingress and Ingress Controllers
	Services and Ingress Controllers Best Practices

	Network Security Policy
	Network Policy Best Practices

	Service Meshes
	Service Mesh Best Practices

	Summary

	10. Pod and Container Security
	PodSecurityPolicy API
	Enabling PodSecurityPolicy
	Anatomy of a PodSecurityPolicy
	PodSecurityPolicy Challenges
	PodSecurityPolicy Best Practices
	PodSecurityPolicy Next Steps

	Workload Isolation and RuntimeClass
	Using RuntimeClass
	Runtime Implementations
	Workload Isolation and RuntimeClass Best Practices

	Other Pod and Container Security Considerations
	Admission Controllers
	Intrusion and Anomaly Detection Tooling

	Summary

	11. Policy and Governance for Your Cluster
	Why Policy and Governance Are Important
	How Is This Policy Different?
	Cloud-Native Policy Engine
	Introducing Gatekeeper
	Example Policies
	Gatekeeper Terminology
	Defining Constraint Templates
	Defining Constraints
	Data Replication
	UX

	Audit
	Becoming Familiar with Gatekeeper
	Gatekeeper Next Steps

	Policy and Governance Best Practices
	Summary

	12. Managing Multiple Clusters
	Why Multiple Clusters?
	Multicluster Design Concerns
	Managing Multiple Cluster Deployments
	Deployment and Management Patterns

	The GitOps Approach to Managing Clusters
	Multicluster Management Tools
	Kubernetes Federation
	Managing Multiple Clusters Best Practices
	Summary

	13. Integrating External Services and Kubernetes
	Importing Services into Kubernetes
	Selector-Less Services for Stable IP Addresses
	CNAME-Based Services for Stable DNS Names
	Active Controller-Based Approaches

	Exporting Services from Kubernetes
	Exporting Services by Using Internal Load Balancers
	Exporting Services on NodePorts
	Integrating External Machines and Kubernetes

	Sharing Services Between Kubernetes
	Third-Party Tools
	Connecting Cluster and External Services Best Practices
	Summary

	14. Running Machine Learning in Kubernetes
	Why Is Kubernetes Great for Machine Learning?
	Machine Learning Workflow
	Machine Learning for Kubernetes Cluster Admins
	Model Training on Kubernetes
	Distributed Training on Kubernetes
	Resource Constraints
	Specialized Hardware
	Libraries, Drivers, and Kernel Modules
	Storage
	Networking
	Specialized Protocols

	Data Scientist Concerns
	Machine Leaning on Kubernetes Best Practices
	Summary

	15. Building Higher-Level Application Patterns on Top of Kubernetes
	Approaches to Developing Higher-Level Abstractions
	Extending Kubernetes
	Extending Kubernetes Clusters
	Extending the Kubernetes User Experience

	Design Considerations When Building Platforms
	Support Exporting to a Container Image
	Support Existing Mechanisms for Service and Service Discovery

	Building Application Platforms Best Practices
	Summary

	16. Managing State and Stateful Applications
	Volumes and Volume Mounts
	Volume Best Practices

	Kubernetes Storage
	PersistentVolume
	PersistentVolumeClaims
	Storage Classes
	Kubernetes Storage Best Practices

	Stateful Applications
	StatefulSets
	Operators
	StatefulSet and Operator Best Practices

	Summary

	17. Admission Control and Authorization
	Admission Control
	What Are They?
	Why Are They Important?
	Admission Controller Types
	Configuring Admission Webhooks
	Admission Control Best Practices

	Authorization
	Authorization Modules
	Authorization Best Practices

	Summary

	18. Conclusion
	Index

